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Abstract

Robotic simulation, planning, estimation, and control, have all been built on
top of numerical optimization. In this same time, modern convex optimization
has matured into a robust technology that delivers globally optimal solutions
in polynomial time. With advances in differentiable optimization and custom
solvers capable of producing smooth derivatives, convex modeling has become
fast, reliable, and fully differentiable. This thesis demonstrates the effective-
ness of convex modeling in areas such as Martian atmospheric entry guidance,
nanosatellite space telescope pointing, collision detection, contact dynamics of
point clouds, online model learning, and finally, a derivative-free method for
trajectory optimization that leverages parallelized simulation. In all of these
domains, the reliability and speed of differentiable convex optimization enables
real-time algorithms that are rigorous, performant, and easy to understand and
modify.
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Chapter 1
Introduction

This dissertation introduces novel methods for robotic simulation, planning, and control
based on differentiable convex modeling. By formulating algorithms in these domains
in an optimization-first framework, we are often able to simplify the complexity of the
algorithm and offload computational complexity to highly specialized and efficient solvers.
This dissertation focuses on extending many of these methods with advances in modern
convex modeling, where solvers are capable of delivering globally optimal solutions to
convex optimization problems while maintaining full differentiability. Since these solvers
are fast, robust, and differentiable, they can be thought of the same way way as more
traditional numerical linear algebra routines such as those used to solve linear systems
[24]. Using convex modeling as a building block for novel algorithm development enables
simple, performant, and flexible algorithms.

In the period between 1939 and 1948, Leonid Kantorovic, George Dantzig, and John
Von Neumann, introduced the fundamental concepts in constrained optimization surround-
ing linear programming and duality [39]. Around the same time, the Karush–Kuhn–Tucker
(KKT) conditions were established that gave clarity to what it means for a solution to a
constrained optimization problem to be “optimal” [24]. While practitioners focused on im-
plementing numerical optimization algorithms on newly introduced computers, theorists
turned their attention towards a useful taxonomy for the world of constrained optimization.
In 1983, Soviet scientists Nemirovski and Yudin made the first formal argument that there
was, in fact, a substantial difference in the problem complexity between solving convex op-
timization problems and general nonlinear optimization problems [22]. The 1980s also saw
the advent of robust interior-point methods that were capable of solving general convex
optimization problems in polynomial time [116]. With advances in numerical linear alge-
bra, algorithmic developments, and faster computers, by the 2000’s convex optimization
was mature and ready for everyday use. Modeling tools such as CVX [63], CVXPY [40]
and Convex.jl [179] made convex optimization accessible by taking problems described in
natural mathematical syntax and solving them with commercial and open source solvers.
In the late 2010s, the works of [7] and [5] enabled the differentiation of well-defined convex
optimization problems with respect to generic problem parameters. Today, convex opti-
mization solvers can be treated as well-understood and reliable differentiable functions for
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use in a wide range of applications.
In Chapter 4, a classical guidance framework for atmospheric entry dating back to the

Apollo program is updated to incorporate convex optimization that results in state-of-the-
art performance. The dynamics of an entry vehicle in an arbitrary atmosphere is discussed
in 4.2 in a form that is less popular in the literature but more amenable to numerical
optimization. From this, the novel Convex Predictor-corrector Entry Guidance (CPEG)
algorithm for atmospheric guidance is detailed that is built on convex optimization in 4.4.
The performance of CPEG is demonstrated on a realistic set of initial conditions, and
convergence is then validated in 4.5.

Chapter 5 expands on Chapter 4 by introducing an updated variant of CPEG that is
capable of directly reasoning about atmospheric uncertainty during entry. The guidance
framework present in CPEG is enhanced with an estimator capable of atmospheric estima-
tion and adjustments are made to the controller-estimator stack to enable robust real-time
control of the vehicles. Results for this algorithm are shown on realistic Martian atmo-
spheres and an ablation study validates the importance of the atmospheric adaptation.

Chapter 6 utilizes a convex optimization-based motion planner that enables precise con-
trol of nanosatellite space telescopes through actuation of weighted booms. Traditionally,
spacecraft control pointing is done with reaction wheels onboard. These rotors are spun up
and down to transfer angular momentum to and from the nanosatellite. Due to imperfec-
tions in these wheels, vibrations are transmitted to the telescope, resulting in poor image
quality. This chapter introduces a new actuation strategy based on slow-spinning long
booms, a noted departure from the more common fast-spinning reaction wheels. Armed
with knowledge of the nanosatellite’s orbit and the Earth’s magnetic field, a convex motion
planner is able to directly reason about future disturbances to enable precise attitude using
just the booms. This technique is demonstrated on a precise space telescope that must
take long exposure during eclipse periods without the booms hitting their actuation limits.

Chapter 7 presents a new approach for collision detection that enables a uniform frame-
work and smooth differentiability. Traditionally, collision detection between two convex
shapes is performed by solving for the closest point between the shapes. This problem
is well defined and easy to solve for many of the common convex primitives, but is non-
differentiable and is force to default to a different algorithm when the shapes are in contact.
Our method for detecting these collisions utilizes a different framework: the minimum uni-
form scaling between the two shapes that results in an intersection is solved for with convex
optimization. This problem is small, guaranteed to be well defined, and has no degenerate
cases. The solution to the resulting convex optimization problem is smooth and differen-
tiable no matter the configuration of the objects, and is used to specify collision avoidance
constraints in representative motion planning examples.

Chapter 8 introduces an extension to Chapter 7 by exploiting the same framework for
use in continuous collision detection. Discrete collision detection checks two static con-
vex shapes for collisions, whereas continuous collision detection must reason about the
same problem when the shapes are moving. Traditionally, the transition from discrete
to continuous collision detection involves significant modifications to the algorithm with
added limitations. Alternatively, the framework from Chapter 7 is augmented with a time
parameter, and another well-defined convex optimization problem is used to solve for con-
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tinuous collision information. Again, this method is fully differentiable and demonstrated
on collision-free motion planning examples where discrete collision detection is insufficient
for avoiding contact.

Chapter 9 details a simple and efficient framework for learning generalized linear mod-
els online as it relates to connector insertion. In this application, the insertion of a male
connector into a female socket presents a challenging environment to model in simulation
due to the deformation of the materials, the tightness of the fit, and the unknown fric-
tion properties. To avoid learning a full dynamics simulator, this work simply learns the
relationship between the control signal, the estimated state, and a wrist-mounted force
torque sensor. This relationship is represented with a generalized linear model, making
the model learning problem convex and well defined. To solve this problem online in a
recursive fashion, the Linear Model Learning (LML) algorithm is developed to learn the
globally optimal estimated model using only matrix-vector operations. In the absence of
any matrix inversions, this algorithm scales very favorably on a GPU, enabling fast and
efficient model learning even with large-scale linear models.

Chapter 10 examines the performance of quasi-dynamic simulation on rigid point clouds,
and extends a common formulation to include the necessary torsional friction for realistic
contact-rich manipulation. When contact with a rigid point cloud is made in rigid-body
dynamics, the single point contact does not allow for the true torsional friction that comes
from the type of patch contacts present in reality. To account for this, a modification is
made to an optimization-based simulation framework to naturally account for this with
a torsional friction term that is proportional to the normal force. The resulting simula-
tion steps are computed with convex optimization and are therefore fully differentiable.
The resulting simulator is used to grasp high-fidelity point clouds with realistic contact
dynamics.

Chapter 11 introduces the trajectory bundle method for highly accurate trajectory op-
timization with black-box simulators, costs, and constraints. Existing methods for model-
based trajectory optimization have access to derivatives of all cost, dynamics, and con-
straint functions presented in the problem. In many cases, this is a reasonable assumption,
but for many challenging robotics tasks such as those involving nonsmooth contact in-
teractions, these derivatives can be unavailable, expensive to compute, or unreliable. To
combat this, the trajectory bundle method approximates these functions by interpolating
samples centered on the current iterate. This method of approximation by interpolation
is derivative-free and results in a linearization different from a standard first-order Taylor-
series. Using this approximation, a convex optimization problem is posed that minimizes
over these interpolants to compute a step direction, and the process is repeated until con-
vergence.

With differentiable convex optimization as a robust technology, this dissertation is able
to contribute simple and performant algorithms to multiple domains within robotics with
guarantees of predictable and safe performance. By reformulating these problems in an
optimization-first way, the resulting algorithms are often simpler and more performant
than without, all while being modular and configurable.
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Chapter 2
Background

This chapter provides a thorough description of constrained optimization as it relates to
the ideas introduced in this dissertation. Standard formulations for general nonlinear
programs, as well as a range of convex optimization problems are detailed. Methods for
differentiating these problems is then introduced, followed by an algorithmic description
for the primal-dual interior-point solver that much of this dissertation is built upon.

2.1 Constrained Optimization

A mathematical optimization problem can be defined as the following:

minimize
x

f(x)

subject to g(x) = 0,

h(x) ≤ 0,

(2.1)

where the primal variable being optimized is x ∈ Rn, the objective function to be minimized
is f : Rn → R, and the constraint functions g : Rn → Rm and h : Rn → Rp dictate the
feasible values for x. If there is no solution x that satisfies the constraints, the problem is
said to be infeasible.

2.1.1 Optimization Taxonomy

Based on the nature of the functions present in (2.1), solving for the globally optimal
solution to a constrained optimization problem ranges from trivial to impossible. In order
to make these distinctions, a rough taxonomy of constrained optimization is presented.

Linear Programs

If functions f , g, and h are all linear functions, problem (2.1) is said to be a Linear Program
(LP). Linear programs can be solved for their global optimums (if one exists) in polynomial
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time, with robust and mature numerical routines. The original and most notable method
for solving LPs is the Simplex method, which solves LPs of the following form:

minimize
x

cTx

subject to Ax = b,

x ≥ 0

(2.2)

Any LP can be cast into this standard form, though this process often involves the intro-
duction of slack variables.

Convex Optimization

If the functions f(x) and h(x) are convex, and g(x) is affine, then problem (2.1) is a convex
optimization problem. LPs denote a subset of convex optimization problems. This is a
powerful distinction to make since convex optimization problems have a set of qualities
that make them very desirable in practice:

• Any locally optimal solution in a convex optimization problem is the globally opti-
mal solution. This means that any solution that satisfies the first-order necessary
conditions shown in 2.1.2 is a globally optimal solution.

• If the constraints in the problem are such that there are no feasible solutions, a solver
can identify this and provide a certificate of infeasibility.

• Convex optimization solvers do not require an initial guess for the primal or dual
variables. For some solvers, an initial guess can be provided (this is called “warm
starting”), but this is not required to find the globally optimal solution.

• Convex optimization problems can be solved in polynomial time.

These qualities for reliability, speed, and solution quality are what make convex optimiza-
tion attractive for real-time implementations.

Nonlinear Programs

Technically if any of the functions f , g, and h in problem (2.1) are nonlinear, then the
optimization problem is considered to be a NonLinear Program (NLP). In the optimiza-
tion literature, convex optimization (which can contain nonlinear functions) is typically
excluded from this, and NLPs are usually referring to nonconvex problems. Unlike convex
optimization, NLPs have the potential to be impossible to solve, and very little can be
guaranteed about the performance on a particular problem. Also unlike convex optimiza-
tion, the initialization of the solver is critical to the performance and even success of the
solve. In the best case, NLP solvers are able to converge to a locally optimal solution, but
are unable to guarantee anything about global optimality.

While solving NLPs require more complexity and risk, they are still very common in
practice and, with careful engineering, can be an appropriate solution. Many common
optimization-based algorithms in robotic perception, control, and planning utilize NLPs
with success.
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2.1.2 Optimality Conditions

The first-order necessary conditions for optimality, also known as the Karush–Kuhn–Tucker
(KKT) conditions, are able to certify a solution as locally optimal. By introducing dual
variables λ ∈ Rm for the equality constraints and and µ ∈ Rp for the inequality constraints,
these optimality conditions can be described as the following:

∇xf(x) +

[
∂g

∂x

]T
λ+

[
∂h

∂x

]T
µ = 0 stationarity, (2.3)

g(x) = 0 primal feasibility, (2.4)

h(x) ≤ 0 primal feasibility, (2.5)

µ ≥ 0 dual feasibility, (2.6)

µ ◦ h(x) = 0 complementarity, (2.7)

where ◦ denotes element-wise multiplication. If a primal-dual solution (x∗, λ∗, µ∗) satisfies
the KKT conditions, it satisfies the first-order necessary conditions for local optimality.
These optimality conditions are useful for both certifying solutions and deriving algorithms
to get to these conditions.

2.2 Primal-Dual Interior-Point Method

One of the most common convex optimization problems is the Quadratic Program (QP).
Similar to an LP, QPs have linear equality and inequality constraints, but are capable of
including both linear and quadratic terms in the objective function. There is less of an
agreement on a “standard form” for a quadratic program, but here is a popular description
of a QP:

minimize
x

1

2
xTQx+ qTx

subject to Ax = b,

Gx ≤ h

(2.8) ⇒
minimize
x, s

1

2
xTQx+ qTx

subject to Ax = b,

Gx+ s = h,

s ≥ 0

(2.9)

where Q ∈ Sn
+ is a positive semidefinite matrix, q ∈ Rn is the linear cost term, A ∈ Rm×n

and b ∈ Rm describe the equality constraint and G ∈ Rp×n and h ∈ Rp describe the
inequality constraint. The standard form in (2.8) is often converted to the equivalent form
in (2.9) with the addition of a nonnegative slack variable s ∈ Rp.

With the introduction of dual variables z ∈ Rp for the inequality constraint and y ∈ Rm
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for the equality constraint, the KKT conditions for (2.9) are the following:

Qx+ q +GT z + ATy = 0, (2.10)

z ◦ s = 0, (2.11)

Gx+ s = h, (2.12)

Ax = b, (2.13)

s ≥ 0, (2.14)

z ≥ 0. (2.15)

2.2.1 Predictor-corrector Algorithm

Primal-dual interior-point methods are capable of solving small to medium QPs in a fast
and robust fashion. While there are many variations, presented here is a standard Mehrotra
predictor-corrector primal-dual interior-point method that has been detailed in [116, 183,
41, 127, 9, 126, 115]. This algorithm is effectively treating the KKT conditions of (2.10)-
(2.13) and solving it as a rootfinding problem with Newton’s Method. The challenges here
come from the nonnegativity constraints in (2.14) and (2.15), and the nonlinearity present
in the complementarity condition (2.11). To deal with these, a predictor-corrector method
is used where two different step directions are computed: an affine step direction that is
calculated with a standard Newton step, and a centering-plus-corrector step that modifies
this step direction to account for the nonnegativity constraints in (2.14) and (2.15), and
the nonlinearity present in the complementarity condition (2.11). This is an iterative
algorithm, and a single iteration will be detailed below.

Affine Step

The algorithm can be initialized with any value of x and y, so long as s, z > 0. From this,
the residual function r : Rn+2p+m → Rn+2p+m is defined as the following:

r

(
x
s
z
y

) =


Qx+ q + ATy +GT z

s ◦ z
Gx+ s− h
Ax− b

 . (2.16)

By solving for the root of the linearized residual function at an iterate (x, s, z, y), a standard
Newton step is used to calculate the “affine” step direction:

Q 0 GT AT

0 D(z) D(s) 0
G I 0 0
A 0 0 0



∆xaff

∆saff

∆zaff

∆yaff

 =


−
(
Qx+ q + ATy +GT z

)
−s ◦ z

−(Gx+ s− h)
−(Ax− b)

 , (2.17)

where D(·) creates a diagonal matrix from a vector.
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Centering-plus-corrector Step

In order to form the centering-plug-corrector step, a linesearch that guarantees nonnega-
tivity is defined. To detail this, an arbitrary variable w > 0 and step direction ∆w are
considered. The largest step length α ∈ [0, 1] that ensures w +∆w ≥ 0 can be written as
the following:

linesearch(w,∆w) = sup{α ∈ [0, 1] | w + α∆w ≥ 0}, (2.18)

which can be solved for in closed form:

linesearch(w,∆w) = min

(
1, min

i:∆wi<0
− wi

∆wi

)
. (2.19)

Using this, the affine step size is computed with the minimum of the maximum step sizes
for both s and z,

αaff = min(linesearch(s,∆saff), linesearch(z,∆zaff)). (2.20)

The centering-plus-corrector step can then be solved for with another linear system:
Q 0 GT AT

0 D(z) D(s) 0
G I 0 0
A 0 0 0



∆xcc

∆scc

∆zcc

∆ycc

 =


0

σµ1−∆saff ◦∆zaff
0
0

 , (2.21)

where µ = sT z/p and

σ =

((
s+ α∆saff

)T (
z + α∆zaff

)
sT z

)3

. (2.22)

From here, these two step directions are combined into a single step direction,

(∆x,∆s,∆z,∆y) = (∆xaff,∆saff,∆zaff,∆yaff) + (∆xcc,∆scc,∆zcc,∆ycc), (2.23)

And a linesearch is used to ensure the positivity (not just nonnegatvity) of s and z with

α = min
(
1, 0.99min(linesearch(s,∆s), linesearch(z,∆z)

)
. (2.24)

The iteration is then concluded with an update to the primal-dual values with:

(x, s, z, y) = (x, s, z, y) + α(∆x,∆s,∆z,∆y). (2.25)
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Algorithm 1 Primal-Dual Interior-Point Method

1: function solve qp(Q, q,A, b,G, h)
2: x, s, z ← initialize(Q, q,A, b,G, h)
3: for i← 1 : max iters do
4: /* evaluate KKT conditions*/

5: v1 ← Qx+ q + ATy +GT z
6: v2 ← s ◦ z
7: v3 ← Gx+ s− h
8: v4 ← Ax− b
9:

10: /* check convergence */

11: if min(∥v1∥∞, ∥v2∥∞, ∥v3∥∞, ∥v4∥∞) < tol then
12: return: x, s, z, y
13: end if
14:

15: /* calculate affine step direction */

16: (∆xaff,∆saff,∆zaff,∆yaff)← solve step(−v1,−v2,−v3,−v4) ▷ 2.2.2
17:

18: /* calculate centering-plus-corrector step direction */

19: αaff = min(linesearch(s,∆saff), linesearch(z,∆zaff)) ▷ (2.19)
20: µ← sT z/ len(s)
21: σ ← [(s+ αaff∆saff)T (z + αaff∆zaff)/(sT z)]3

22: r2 ← σµ1−∆saff ◦∆zaff
23: (∆xaff,∆saff,∆zaff,∆yaff)← solve step(0n, r2, 0

p, 0m) ▷ 2.2.2
24:

25: /* combine step directions and perform linesearch */

26: (∆x,∆s,∆y,∆z) = (∆xaff,∆saff,∆yaff,∆zaff) + (∆xcc,∆scc,∆ycc,∆zcc)
27: α← min

(
1, 0.99min(linesearch(s,∆s), linesearch(z,∆z)

)
▷ (2.19)

28: (x, s, z, y)← (x, s, z, y) + α(∆x,∆s,∆z,∆y)
29: end for
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2.2.2 Solving the Linear System

The majority of the computational effort in Alg. 1 is in solving the linear systems in (2.17)
and (2.21). Both of these linear systems have the same matrix, sharing the general form:

Q 0 GT AT

0 D(z) D(s) 0
G I 0 0
A 0 0 0



∆x
∆s
∆z
∆y

 =


u1
u2
u3
u4

 . (2.26)

The matrix in this linear system changes each iteration as s and z are updated, but
are the same between the affine step computation and the centering-plus-correction step
computation. This means the matrix only has to be factorized once at each iteration. How
this is done depends on the size and sparsity of the matrix.

Sparse Options

For large problems where any of Q, G, or A are dense, it often makes sense to solve the
linear system in (2.26) with a sparse direct solver. The first option is to simply factorize
the matrix in (2.26) with a sparse LU factorization and solve it as written.

Alternatively, if the second row of (2.26) is left-multiplied by D(s)−1, the linear system
takes this form: 

Q 0 GT AT

0 D(s)−1D(z) I 0
G I 0 0
A 0 0 0



∆x
∆s
∆z
∆y

 =


u1

D(s)−1u2
u3
u4

 , (2.27)

which is a symmetric quasisemidefinite matrix, meaning the upper left-hand block is sym-
metric positive semidefinite and the lower right-hand block is symmetric negative semidef-
inite. This matrix can be regularized with a positive regularizer on the top left block and a
negative regularizer on the bottom right block and the regularized matrix can be factorized
with a sparse LDL decomposition [115]. The solution to the linear system in (2.27) can
be recovered with iterative refinement, which involves only a few more backsolves with the
already factorized linear system. For large sparse systems, the cost of an LU decomposition
of (2.26) can be higher than that of an LDL decomposition of (2.27) followed by iterative
refinement.

Dense Option

For small dense problems, the most efficient method of solving the linear system is done
with blockwise elimination. The majority of the computational cost in this scenario is
performing two Cholesky decompositions at each iteration. Unlike the symmetrized sparse
option, there is no regularization or iterative refinement required. This technique is demon-
strated in 3.
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2.3 Differentiable Optimization

With the advent of automatic differentiation tools, forming derivatives through complex
routines is easier than ever. When one of these routines includes an iterative routine, one
solution is to unroll the iterations into a computational graph and differentiate it as if it
were just a normal function. For routines with a limited number of iterations, this solution
may be appropriate. That being said, there are a few reasons why this approach could fail.
The first reason is that sometimes the iterations involve non-smooth operations or logical
branching that stop the “flow” of gradients, or are otherwise nondifferentiable. The second
reason involves the numerical conditioning through procedures with many iterations, where
each iteration through which the derivatives are propagated results in a loss of numerical
precision.

2.3.1 Implicit Function Theorem

When an iterative routine can be interpreted as finding a root or an equilibrium point
of an implicit function, the implicit function theorem can be used to form the required
derivatives. Given variables y ∈ Ra and θ ∈ Rb, an implicit function is defined as:

r(y∗, θ) = 0, (2.28)

at an equilibrium point y∗. This implicit function can be linearized about the equilibrium
point resulting in the following:

∂r

∂y
δy +

∂r

∂θ
δθ ≈ 0, (2.29)

which can simply be re-arranged to solve for the Jacobian of y with respect to θ:

∂y

∂θ
= −

(
∂r

∂y

)−1
∂r

∂θ
. (2.30)

This enables the differentiation of routines that solve for equilibrium points without the
need for unrolling the iterations themselves.

2.3.2 Full Jacobians

To apply the implicit function theorem to optimization, a parametrized optimization prob-
lem of the following form will be considered:

minimize
x

fθ(x)

subject to hθ(x) ≤ 0,
(2.31)

where x ∈ Rn is the primal variables, µ ∈ Rp is the dual variable for the inequality
constraints, and θ ∈ Rb are the problem parameters that are used to construct the cost or
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constraint functions. The KKT conditions for this problem are the following:

∇xfθ(x) +

[
∂hθ
∂x

]T
µ = 0, (2.32)

µ ◦ hθ(x) = 0, (2.33)

hθ(x) ≤ 0, (2.34)

µ ≥ 0. (2.35)

A numerical solver for problem (2.31) will solve for a primal-dual solution (x∗, µ∗) that
satisfies the KKT conditions. By treating these primal-dual variables as a single variable
y = [xT , µT ]T , the conditions in (2.32) and (2.33) can be viewed as an implicit function:

r(y∗, θ) =

[
∇xfθ(x) +

[
∂hθ

∂x

]T
µ

µ ◦ hθ(x)

]
≈ 0, (2.36)

where y∗ contains the approximate primal-dual solution. Using the implicit function the-
orem as shown in (2.30), the derivatives of the optimal primal-dual variables can be con-
structed with the following:

∂y

∂θ
= −

(
∂r

∂y

)−1
∂r

∂θ
, (2.37)

∂y

∂θ
=

[
∇2

xfθ(x
∗) + ∂

([
∂hθ

∂x∗

]T
µ∗)/∂x [

∂hθ

∂x∗

]T
D(µ∗)∂hθ

∂x
D(hθ(x

∗)

]−1
∂r

∂θ
, (2.38)

thus giving the Jacobian of the primal and dual variables with respect to the problem
parameters. In the context of backward mode automatic differentiation, [7] details a way
to form these gradients as Jacobian vector products without explicitly forming any large
Jacobians.

2.3.3 Objective Value Gradient

In the case where the only derivative of interest is that of the optimal objective value
fθ(x

∗) with respect to the problem parameters, there is a more efficient way to compute
this gradient without the implicit function theorem. Consider the Lagrangian of (2.31),

Lθ(x, µ) = fθ(x) +muThθ(x). (2.39)

As shown in [33], the gradient of the optimal objective value with respect to the problem
parameters is simply the gradient of the Lagrangian at a primal-dual solution with respect
to the problem parameters:

∇θfθ(x
∗, µ∗) = ∇θLθ(x

∗, µ∗), (2.40)

resulting in a fast and efficient way to compute this gradient without the need for the
implicit function theorem or a linear system solve.
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Chapter 3
On the Differentiability of the
Primal-Dual Interior-Point Method

Primal-Dual Interior-Point methods are capable of solving constrained convex optimization
problems to tight tolerances in a fast and robust manner. The derivatives of the primal-dual
solution with respect to the problem matrices can be computed using the implicit function
theorem, enabling efficient differentiation of these optimizers for a fraction of the cost of the
total solution time. In the presence of active inequality constraints, this technique is only
capable of providing discontinuous subgradients that present a challenge to algorithms
that rely on the smoothness of these derivatives. This paper presents a technique for
relaxing primal-dual solutions with a logarithmic barrier to provide smooth derivatives
near active inequality constraints, with the ability to specify a uniform and consistent
amount of smoothing. We pair this with an efficient primal-dual interior-point algorithm for
solving an always-feasible ℓ1-penalized variant of a convex quadratic program, eliminating
the issues surrounding learning potentially infeasible problems. This parallelizable and
smoothly differentiable solver is demonstrated on a range of robotics tasks where smoothing
is important. An open source implementation in JAX is available at www.github.com/

kevin-tracy/qpax.

The contents of this chapter are on arXiv: Tracy and Manchester [176].

3.1 Introduction

Convex optimization has seen widespread use in modern robotics, where the guarantees
of global optimality and polynomial time complexity have enabled algorithms that span
control [94, 21], state estimation [184, 197], actuator allocation [178, 91], collision detection
[59, 170], and simulation [10, 133].

For years, practitioners have exploited domain-specific knowledge to craft convex op-
timization problems that enjoy fast and reliable convergence for both offline and online
use. In the era of data-driven robotics, differentiable optimization has enabled automatic
tuning or “learning” of optimization problems directly from data. Although this may not
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replace domain-specific knowledge, the ability to build complex tuneable functions with
embedded optimization problems is well suited for a variety of tasks.

The sensitivity analysis of linear programs has been studied for decades [24], but recent
advances in differentiable convex optimization and parametrized convex layers in deep
networks are gaining traction [8, 4, 5]. This has resulted in convex modeling tools such
as CVXPY layers that enable easy incorporation of differentiable convex optimization into
common workflows [40].

There are two main issues preventing the widespread adoption of differentiable op-
timization in robotics as it exists today: the subgradient problem and the infeasibility
problem. For active inequality constraints in optimization problems, the derivatives prop-
agated through these solvers are restricted to subgradients when there is no uniquely de-
fined gradient. This results in routines getting “stuck” near these inequalities due to their
nonsmooth nature. The second issue arises when infeasible problem instances are created
during auto-tuning. While infeasibility detection is commonplace in convex optimization,
detecting an infeasible problem does not address the root cause of the infeasibility, nor
provide informative gradient information to encourage feasibility.

In this paper, we propose solutions to both of these problems. Our contributions
include:

• A rigorous method for returning unique and smoothed derivatives of convex opti-
mization problems through the use of a relaxed logarithmic barrier

• A primal-dual interior-point algorithm for solving an always-feasible “elastic” quadratic
program with minimal computational overhead

Together, these two advances are presented in an open source software package written in
JAX and demonstrated on the relevant robotics tasks of contact dynamics and collision
detection.

3.2 Background

This section introduces the notation for a standard form of the convex Quadratic Program
(QP), common solution methods, and extensions to differentiable optimization.

3.2.1 Quadratic Programming

In this paper, we focus on the convex QP as a fundamental problem specification. Modern
algorithms such as the Primal-Dual Interior-Point (PDIP) method solve these problems
globally in a fast and efficient manner [115]. A standard form quadratic program and its
equivalent with a slack variable are as follows:
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minimize
x

1

2
xTQx+ qTx

subject to Ax = b,

Gx ≤ h,

(3.1) ⇒
minimize
x, s

1

2
xTQx+ qTx

subject to Ax = b,

Gx+ s = h,

s ≥ 0,

(3.2)

with a primal variable x ∈ Rn, cost terms Q ∈ Sn
+ and q ∈ Rn, equality constraints

described with A ∈ Rm×n and b ∈ Rm, and inequality constraints with G ∈ Rp×n and
h ∈ Rp. Dual variables are introduced to enforce the constraints, with y ∈ Rm associated
with the equality constraint, and z ∈ Rp with the inequality constraints [24]. The slack
variable s ∈ Rp is introduced for algorithmic simplicity. The Lagrangian for this problem
is then

L(x, s, z, y) = 1

2
xTQx+ qTx+ yT (Ax− b) + zT (Gx− h), (3.3)

resulting in the following KKT conditions for optimality:

Qx+ q +GT z + ATy = 0, (3.4)

z ⊙ s = 0, (3.5)

Gx+ s = h, (3.6)

Ax = b, (3.7)

s, z ≥ 0, (3.8)

where ⊙ denotes elementwise multiplication, and ⊘ denotes elementwise division. A
primal-dual solution (x∗, s∗, y∗, z∗) is globally optimal if it satisfies (3.4)-(3.8).

3.2.2 Primal-Dual Interior-Point Methods

PDIP methods solve (3.2) by treating a modified version of the system of equations in
(3.4)-(3.7) as a root finding problem, and then using Newton’s method to find a solution
while restricting (s, z) > 0. As a result, the majority of the computation time is spent
solving linear systems of the following form:

Q 0 GT AT

0 D(z) D(s) 0
G I 0 0
A 0 0 0



∆x
∆s
∆z
∆y

 =


u1
u2
u3
u4

 , (3.9)

where D(·) denotes the diagonal matrix constructor from a vector. Using block reduction
techniques, the linear system in (3.9) can be efficiently solved with Alg. (2). This technique
for solving linear systems of this form is useful for both the solving and differentiation of
the PDIP method.
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After the step directions are computed with the linear system, a linesearch is used to
ensure the nonnegativity of (s, z) . For an arbitrary variable v and step direction ∆v, a
linesearch that solves for the largest α ≤ 1 that keeps v+∆v ≥ 0 is solved in closed form:

α = linesearch(v,∆v) = min

(
1, min

i:∆vi<0
− vi
∆vi

)
. (3.10)

This linesearch is performed for both s and z, and the step length is simply the minimum
of the two. For a complete algorithmic specification and implementation details, we refer
the reader to [115] for a PDIP method for which Alg. (2) can be used to solve the linear
systems.

Algorithm 2 Primal-Dual Linear System Solver

1: function solve kkt(u1, u2, u3, u4) ▷ assume access to Q,G,A, s, z
2: P ← D(s⊘ z)
3: H ← Q+GTP−1G ▷ cacheable Cholesky decomposition
4: F ← AH−1AT ▷ cacheable Cholesky decomposition
5: r2 ← u3 − u2 ⊘ z
6: p1 ← u1 +GTP−1r2
7: ∆y ← F−1(AH−1p1 − u4)
8: ∆x← H−1(p1 − AT∆y)
9: ∆s← u3 −G∆x
10: ∆z ← (u2 − z ⊙∆s)⊘ s
11: return (∆x,∆s,∆z,∆y)

3.2.3 Differentiable Optimization

Modern automatic differentiation tools have made forming derivatives through complex
functions easier than ever. When one of these functions includes an iterative routine,
unrolling the iterations into a sequential computational graph and proceeding with dif-
ferentiation is not always possible. The first concern is nonsmooth operations or logical
branching in the iterations that can stop the “flow” of the derivatives through the routine,
and the second concern is the rapidly decaying numerical precision inherent in differenti-
ating an iterative process.

To address both of these shortcomings, iterative routines such as numerical optimizers
are differentiated with methods that do not require propagating derivatives through the
iterations themselves. Instead, the optimization problem is solved as normal, and the
derivatives are then constructed directly from the solution to the problem.

Implicit Function Theorem

When an iterative routine can be interpreted as finding a root or an equilibrium point to
an implicit function, the implicit function theorem can be used to form the derivatives of
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interest. Given variables w ∈ Ra and parameters θ ∈ Rb, an implicit function is defined as

r(w∗, θ) = 0, (3.11)

at an equilibrium point w∗. This implicit function can be linearized about this point
resulting in the following first-order Taylor series:

∂r

∂w
δw +

∂r

∂θ
δθ = 0, (3.12)

which can simply be re-arranged to solve for

∂w

∂θ
= −

(
∂r

∂w

)−1
∂r

∂θ
. (3.13)

The implicit function theorem enables the differentiation of routines that solve for equilib-
rium points without the need to unroll and differentiate the iterations themselves.

By treating the KKT conditions from (3.4)-(3.7) as a residual function of the primal-
dual solution (x, s, z, y) and problem parameters θ, the implicit function theorem is used
to form the derivatives of the optimizer without unrolling the iterations. The linear system
from (3.13) applied to this residual function is of the same form as that in Alg. (2), enabling
fast and easy computation of derivatives using a framework already available in the solver.

Efficient Computation of Gradients

Using the implicit function theorem to compute the Jacobians of the primal-dual solution
with respect to the problem parameters results in the need to directly form potentially
large Jacobians. In many cases, it is not these specific Jacobians that are of interest, but
rather the left matrix-vector product with a backward pass vector.

For a loss function of the primal variable ℓ(x) that takes as input the optimal primal
variable from (3.1), reverse-mode automatic differentiation will have constructed ∇xℓ by
the time it comes to the QP solver in the backward pass of the computational graph.
Instead of forming the Jacobians of the primal variable with respect to each of the problem
matrices directly, it is instead desirable to form the left matrix-vector products ∂ℓ

∂x
∂x
∂□ , where

□ simply denotes any of the problem matrices [7].
As shown in Alg. (3), the gradients of this loss function∇□ℓ with respect to the problem

parameters of the QP can be computed by once again utilizing our interior-point linear
system solver.

3.3 Logarithmic Barrier Smoothing

Primal interior-point methods work by replacing constraints of the form h(x) ≤ 0 with
a logarithmic barrier penalty in the form of ϕ(x) = −κ∑ log(−h(x)), where κ ∈ R+ is
referred to as the central path parameter. This barrier function is a smooth approximation
of the indicator function, where feasible values of x result in no penalty, and infeasibility
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Algorithm 3 Computing Gradients Through a QP

1: function compute qp grads(Q, q,A, b,G, h, x, s, z, y,∇xℓ)
2: dx, ds, dz̃, dy ← solve kkt(−∇xℓ, 0, 0, 0) ▷ compute differentials with kkt system
3: dz = dz̃ ⊘ z
4: ∇Qℓ←

(
(dx)xT + x(dx)T )

)
/2

5: ∇qℓ← dx
6: ∇Aℓ← (dy)xT + y(dx)T

7: ∇bℓ← −dy
8: ∇Gℓ← z ⊙

(
(dz)xT + z(dx)T

)
9: ∇hℓ← −z ⊙ dz
10: return ∇Qℓ,∇qℓ,∇Aℓ,∇bℓ,∇Gℓ,∇hℓ
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Figure 3.1: A sharp corner in a square as smoothed with the logarithmic barrier at varying
central path parameters κ. As κ → 0, the corner becomes more pronounced until it
assumes a true 90◦ corner at κ = 0. The logarithmic barrier effectively smooths out any
sharp corners of the feasible set enabling smooth differentiation in the presence of such
discontinuities.

results in an infinite penalty [24]. By solving a sequence of unconstrained problems as
κ→ 0, the logarithmic barrier becomes a closer and closer approximation of the indicator
function until acceptable convergence is achieved. This barrier function is only defined for
feasible values of x, hence the name “interior-point”.

For a quadratic program in standard form (3.2), the optimality conditions for a barrier
subproblem given a central path parameter κ are almost identical to the original KKT
conditions (3.4)-(3.8) with the exception of the complementarity condition (3.5) replaced
with z⊙ s−κ = 0. This relaxed complementarity condition allows for a certain amount of
smoothing over the feasible set, where larger values of κ have a stronger smoothing effect.
The optimality conditions for this barrier subproblem are referred to as the perturbed or
relaxed KKT conditions.
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3.3.1 Relaxing Primal-Dual Solutions

Algorithm 4 Relaxing a Quadratic Program

1: function relax qp(Q, q,A, b,G, h, x, s, z, y, κ)
2: for i← 1 : max iters do
3: /* evaluate relaxed KKT conditions and check convergence*/

4: r1 ← Qx+ q + ATy +GT z
5: r2 ← s⊙ z − κ ▷ relaxed complementarity
6: r3 ← Gx+ s− h
7: r4 ← Ax− b
8: if ∥(r1, r2, r3, r4, r5, r6)∥∞ < tol then
9: return: x, t, s1, s2, z1, z2
10: end if
11:

12: /* calculate and take Newton step */

13: ∆x,∆s,∆z,∆y ← solve kkt(−r1,−r2,−r3,−r4) ▷ Alg. (2)
14: α← 0.98min

(
linesearch(s,∆s), linesearch(z,∆z)

)
▷ (3.10)

15: (x, s, z, y)← (x, s, z, y) + α(∆x,∆s,∆z,∆y)
16: end for

When differentiating a quadratic program near an active inequality constraint, the
implicit function theorem can produce subgradients that are potentially uninformative as
a result of rank deficient linear systems [4]. In order to ensure smooth and continuous
gradients in the presence of sharp corners in the feasible set, proposed here is a relaxation
method that exploits the smoothing of the logarithmic barrier to effectively round out any
nonsmoothness. Specifically, the idea is to take a primal-dual solution that is optimal to
some low κlow, and relax it to a specified κhigh.

In PDIP methods, much care is taken to solve the perturbed KKT conditions for
decreasing κ→ 0. The most common strategy in PDIP methods is a Mehrotra predictor-
corrector method that adaptively updates the target κ until it is below the convergence
criteria [116]. While solving this system for a sequence where κ→ 0 is challenging, going
the other direction from κlow → κhigh is actually quite trivial. For this case, standard
Newton steps on the perturbed KKT conditions with a linesearch to ensure (s, z) > 0 is
able to converge to κhigh in only a few steps. This algorithm is shown in Alg. (4), where
once again the linear system solver from Alg. (2) is used.

Once the primal-dual solution to the quadratic program has been relaxed, Alg. (3)
is used to calculate gradients that benefit from the logarithmic barrier smoothing. The
full sequence for the solving, relaxation, and differentiation of a quadratic problem is as
follows:

1. Solve the quadratic program to a specified tolerance and return the solution

2. Relax the primal-dual solution to a target κ

3. Form the derivatives of interest at the relaxed primal-dual solution
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This means that the solver itself can return high quality solutions to tight tolerances while
still returning smooth gradients evaluated at the relaxed solution. In modern automatic
differentiation frameworks, this sequence is written into a custom forward and backward
pass through the function with limited overhead.

The choice of a target κ is left to the specifics of the problem at hand. In some scenarios,
only a little bit of smoothing is required, making a lower κ appropriate. For very sharp
corners in the feasible set (like the tip of a triangle), a larger value of κ can be used to
provide even more smoothing. In either case, computing the derivatives of the solver with
this technique allows both the tolerance of the solver and the relaxed κ to be specified
exactly and independently.

3.4 Elastic Quadratic Program Solver

While the convexity of a quadratic program guarantees a globally optimal solution when
one is available, there is generally no guarantee of feasibilty. This infeasibility occurs when
the quadratic program has a set of constraints that are impossible to satisfy, something
that can easily happen in practice if the constraint matrices are learned. In the event of
an infeasible problem, standard PDIP methods are unable to return a useful solution.

Traditionally, infeasibility in convex optimization problems can be handled with a ho-
mogenous self-dual embedding that allows for the computation of a certificate of infeasi-
bility [42, 183, 152]. This ensures that, even in the event of an infeasible problem, the
solver can “gracefully” fail in a way that simply returns certification that there are no
solutions that satisfy the constraints. While this approach is useful for determining if a
given problem is feasible, ideally we would set up problems such that infeasibility is not
possible.

Given a convex quadratic program in a standard inequality-only form,

minimize
x

1

2
xTQx+ qTx

subject to Gx ≤ h,
(3.14)

it is possible there is no x that satisfies Gx ≤ h. In order to convert the optimization
problem in (3.14) into one in which there is always a solution, the hard constraints are
converted into penalties. An ℓ1-penalty on the constraint violation is chosen because the
ℓ1-norm encourages sparsity in the constraint violation, translating into a penalty that
encourages the solver to satisfy as many of the constraints as possible. This is a common
technique in nonlinear programming [130] for the handling of infeasible subproblems. This
“elastic” mode, as it is referred to in the solver SNOPT [61], is a highly effective method to
guarantee that a problem always has a solution without sacrificing the quality and utility
of the solution. The problem from (3.14) is converted into its elastic form as follows:

minimize
x

1

2
xTQx+ qTx+ ∥ρ⊙max(0, Gx− h)∥1, (3.15)

such that feasible values of x do not contribute to the cost function but infeasibility is
penalized with ρ ∈ Rp. While (3.15) is an unconstrained convex optimization problem, it
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is nonsmooth and does not pair well with PDIP methods. We therefore reformulate it as:

minimize
x, t

1

2
xTQx+ qTx+ ρT t

subject to Gx− h ≤ t,

t ≥ 0,

(3.16)

where t ∈ Rp is a slack variable containing the constraint violation, and a simple linear
cost term is used to recover the ℓ1-penalty from (3.15).

Solving the elastic quadratic program in (3.16) with a PDIP method normally comes
at an added computational expense since we have increased the number of primal-dual
variables from n+2p to n+5p. To avoid the cubic complexity in the increase primal-dual
dimension, we introduce a custom algorithm for solving these problems that exploits the
sparsity of the constraints such that the time to solve the elastic version of the problem is
only a slight (5–20%) increase compared to the time to solve the original problem.

As before, the PDIP method for solving (3.16) is dominated by the factorization and
solving of linear systems in the following form:

Q 0 0 0 0 GT

0 0 0 0 −I −I
0 0 Z1 0 S1 0
0 0 0 Z2 0 S2

0 −I I 0 0 0
G −I 0 I 0 0




∆x
∆t
∆s1
∆s2
∆z1
∆z2

 =


r1
r2
r3
r4
r5
r6

 . (3.17)

As shown in Alg. (6), this linear system can be solved with block-wise elimination where
the only matrix factorization required is that of a positive definite matrix the size of the
primal variable x. This routine is used in the full PDIP algorithm for the elastic QP as
shown in Alg. (5).

The elastic QP is fully differentiable in the same way the original QP is. To do this,
Alg. (7) is used to take a primal-dual solution and relax it to a specified κ, and Alg.
(6) for solving the linear systems is re-used for fast and efficient relaxation of the elastic
problem. From this, the gradients of a downstream loss function with respect to the
problem parameters can be constructed with Alg. (8), again using the same linear system
solver.

The solving, relaxation, and differentiation of the elastic mode QP are all only a slight
increase in computational complexity compared to the original QP, with the benefit of
guaranteed feasibility. This enables the inclusion of always-feasible quadratic programming
in learned pipelines where feasibility cannot be guaranteed by construction.

3.4.1 Elastic Initialization

In order to initialize the PDIP method shown in Alg. (5), the only requirement is that
s, z > 0. In practice, a more advanced initialization technique can both reduce the number
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Algorithm 5 PDIP Method for Elastic Quadratic Programs

1: function solve qp elastic(Q, q,G, h, ρ)
2: x, s1, s2, z1, z2 ← initialize(Q, q,G, h, ρ) ▷ 3.4.1
3: for i← 1 : max iters do
4: /* evaluate KKT conditions and check convergence*/

5: r1 ← Qx+ q +GT z2
6: r2 ← −z1 − z2 + ρ
7: r3 ← s1 ⊙ z1
8: r4 ← s2 ⊙ z2
9: r5 ← −t+ s1
10: r6 ← Gx− t+ s2 − h
11: if ∥(r1, r2, r3, r4, r5, r6)∥∞ < tol then
12: return: x, t, s1, s2, z1, z2
13: end if
14:

15: /* calculate affine step direction Alg. (6)*/
16: ∆xa,∆ta,∆sa1,∆s

a
2,∆z

a
1 ,∆z

a
2 ← elastic kkt(−r1,−r2,−r3,−r4,−r5,−r6)

17: ∆sa, ∆za ← (∆sa1,∆s
a
2), (∆z

a
1 ,∆z

a
2)

18: s, z ← (s1, s2), (z1, z2)
19: /* calculate centering-plus-corrector step direction */

20: αa = min(linesearch(s,∆sa), linesearch(z,∆za)) ▷ (3.10)
21: µ← sT z/ len(s)
22: σ ← [(s+ αa∆sa)T (z + αa∆za)/(sT z)]3

23: r3 ← r3 − σµ1+∆sa1 ⊙∆za1
24: r4 ← r4 − σµ1+∆sa2 ⊙∆za2
25: ∆x,∆t,∆s1,∆s2,∆z1,∆z2 ← elastic kkt(−r1,−r2,−r3,−r4,−r5,−r6)
26:

27: /* update with linesearch */

28: α← 0.98min(linesearch(s,∆s), linesearch(z,∆z))
29: (x, t, s1, s2, z1, z2)← (x, t, s1, s2, z1, z2) + α(∆x,∆t,∆s1,∆s2,∆z1,∆z2)
30: end for
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Algorithm 6 Elastic Primal-Dual Linear System Solver

1: function elastic kkt(r1, r2, r3, r4, r5, r6) ▷ assume access to Q,G,A, s1, s2, z1, z2
2: w1 ← r3 ⊘ z1
3: w2 ← r4 ⊘ z2
4: p1 ← r5 − r6 + w2 − w1 − (s1 ⊙ r2)⊘ z1
5: A3 ← diag(a1 + a2)
6: ∆x← (Q+GTA−1

3 G)−1(r1 −GTA−1
3 p1) ▷ Cholesky factorization (cacheable)

7: ∆z2 ← A−1
3 (p1 +G∆x)

8: ∆z1 ← −r2−∆z2
9: ∆s1 ← (r3 − s1 ⊙∆z1)/z1
10: ∆s2 ← (r4 − s2 ⊙∆z2)/z2
11: ∆t← ∆s1 − r5
12: return ∆x, ∆s1, ∆s2, ∆z1, ∆z2

of iterations required for convergence and dramatically improve the robustness of the solver.
The initialization from [183] and [115] is adapted for use in the elastic case.

First, the solution to an easier but similar quadratic program is computed analytically:

minimize
x, t, s1, s2

1

2
xTQx+ qTx+

1

2
(sT1 s1 + sT2 s2) + ρT t

subject to s1 − t = 0,

Gx− t+ s2 = h,

(3.18)

where the primal and dual solutions are the solution to the linear system,
Q 0 0 GT

0 0 −I −I
0 −I −I 0
G −I 0 −I



∆x
∆t
∆z1
∆z2

 =


−q
ρ
0
h

 , (3.19)

which can be solved with a dense block reduction:

x = (Q+
1

2
GTG)−1

(
− q − 1

2
GT (ρ− h)

)
, (3.20)

z2 =
1

2
(Gx+ ρ− h), (3.21)

z1 = ρ− z2, (3.22)

t = −z1. (3.23)

This method requires a single Cholesky factorization of a matrix the size of x. From here,
we stack z = (z1, z2) and initialize s = (s1, s2) with

αp = −min(−z), (3.24)

s =

{
−z, αp < 0

−z + (1 + αp1), αp ≥ 0
. (3.25)
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The dual variable for the inequality constraint is then initialized with

αd = −min(−z), (3.26)

z =

{
z + (1 + αd1), αd ≥ 0

z, αd < 0
, (3.27)

finishing the initialization of the primal and dual variables.

Algorithm 7 Relaxing an Elastic Quadratic Program

1: function relax qp elastic(Q, q,A, b,G, h, ρ, x, t, s1, s2, z1, z2, κ)
2: for i← 1 : max iters do
3: /* evaluate KKT conditions and check convergence*/

4: r1 ← Qx+ q +GT z2
5: r2 ← −z1 − z2 + ρ
6: r3 ← s1 ⊙ z1 − κ ▷ relaxed complementarity
7: r4 ← s2 ⊙ z2 − κ ▷ relaxed complementarity
8: r5 ← −t+ s1
9: r6 ← Gx− t+ s2 − h
10: if ∥(r1, r2, r3, r4, r5, r6)∥∞ < tol then
11: return: x, t, s1, s2, z1, z2
12: end if
13:

14: /* calculate and take Newton step*/

15: ∆x,∆t,∆s1,∆s2,∆z1,∆z2 ← elastic kkt(−r1,−r2,−r3,−r4,−r5,−r6)
16: ∆s, ∆z ← (∆s1,∆s2), (∆z1,∆z2)
17: s, z ← (s1, s2), (z1, z2)
18: αa = 0.98min(linesearch(s,∆s), linesearch(z,∆z)) ▷ (3.10)
19: (x, t, s1, s2, z1, z2)← (x, t, s1, s2, z1, z2) + α(∆x,∆t,∆s1,∆s2,∆z1,∆z2)
20: end for

3.5 Numerical Experiments

The utility of the proposed approaches are demonstrated on the common optimization-
based robotics tasks of contact mechanics simulation and collision detection. In each of
these tasks, a QP makes up a core part of the algorithm and smooth differentiation through
the inherent nonsmoothness proves useful.

3.5.1 Contact Mechanics

For a block at rest on a table with both gravity and friction, the nonsmooth contact
dynamics can be represented as the solution to a convex quadratic program. For a full
treatment of optimization-based dynamics, the reader is referred to [10] and [78].
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Algorithm 8 Computing Gradients Through an Elastic QP

1: function compute elastic qp grads(Q, q,G, h, x, t, s1, s2, z1, z2,∇xℓ)
2: /* compute differentials with same linear system */

3: dx, dt, ds1, ds2, dz̃1, dz̃2 ← elastic kkt(−∇xℓ, 0, 0, 0, 0, 0)
4: p, s, z ← (x, t), (s1, s2), (z1, z2)
5: dp, ds, dz ← (dx, dt), (ds1, ds2), (dz̃1, dz̃2)⊘ (z1, z2)
6: /* create indices (one-based) and form gradients from differentials */

7: ix← 1 : len(q)
8: is← (len(q) + 1) : (len(q) + len(h))
9: ∇Qℓ←

[(
(dp)pT + p(dp)T )

)
/2
]
ix,ix

10: ∇qℓ← [dp]ix
11: ∇Gℓ←

[
z ⊙

(
(dz)pT + z(dp)T

)]
is,ix

12: ∇hℓ← [−z ⊙ dz]is
13: return ∇Qℓ,∇qℓ,∇Aℓ,∇bℓ,∇Gℓ,∇hℓ
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Figure 3.2: Contact dynamics for a two-dimensional block as modeled with a quadratic
program. When a horizontal force fx is applied to the block, it must overcome the friction
with the ground before it moves, and when a vertical force fy is applied, it must overcome
gravity. Despite these discontinuities in the dynamics, the relaxed gradients from the dif-
ferentiable quadratic program solver are able to provide smooth and continuous derivative
information before and after the block begins to move.

In the simplest case, a block is stationary until it is acted upon by a force that exceeds
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Figure 3.3: Using the gradients from the block pushing example in Fig. 3.2, a vertical
force is optimized to accelerate the block to a set value from multiple different initial force
values. When the force is below the threshold for the block to move and κ = 0, the gradient
is zero and the optimizer fails to make progress. In the case of κ = 0.01, even before the
block moves there is gradient information that pushes the optimizer to converge on the
optimal force regardless of the initial force value.

the static frictional force in the horizontal direction, or the gravitational force in the vertical
direction. Until the applied forces exceed these two thresholds, the block does not move.
This exercise is demonstrated in Fig. 3.2, where forces are applied in each of the two
directions and the true derivatives of these dynamics at κ = 0 have a discontinuity as
soon as the block begins to move. When these derivatives are taken with a relaxed κ > 0,
the discontinuous derivative is smoothed, allowing for an informative gradient about the
impending motion of the block before it moves.

This derivative information is used in an optimization routine in Fig. 3.3, where an
optimizer attempts to solve for an applied force that produces the desired motion from
the block. This optimizer is initialized at multiple different force values, and uses either
exact gradients with κ = 0, or smoothed gradients with κ = 0.01. In the case of exact
gradients, for initial forces where the block does not move, the gradient is zero and the
solver is unable to find a descent direction. When κ is relaxed, the smooth gradients
provide information about the motion of the block even before the block itself begins to
move, allowing the optimizer to converge on the true solution for each initial force. This
is a simple yet expressive demonstration of the impact these smooth gradients have on
optimization routines in the presence of discontinuous subgradients.

3.5.2 Collision Detection

Collision detection between convex shapes can be formulated as a convex optimization
problem, both in terms of the closest point between shapes [60], and in terms of the
minimum scale factor [170]. For the former, we introduce two points in a world frame
pi ∈ R3, and two polytopes described with Aipi ≤ bi. By constraining each point to be
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Figure 3.4: Contact normal vectors from an optimization-based differentiable collision
detection routine with and without relaxed differentiation. With no relaxation (κ = 0),
the direction of the contact normal switches immediately as the closest point moves from
one face to another. When relaxed gradients are used (κ = 0.01), the contact normal
smoothly transitions between the faces.

within a polytope, a QP is used to solve for the closest point between these two shapes,

minimize
p1, p2

∥p1 − p2∥22
subject to A1p1 ≤ b1,

A2p2 ≤ b2.

(3.28)

Using a differentiable QP solver, the gradient of the objective value with respect to the
positions of the polytopes results in the contact normal vectors.

In this example, we examine collision detection between two squares and the behavior
of these contact normals in the presence of sharp corners. As shown in Fig. 3.4, the
contact normals are evaluated at a strict κ = 0 and a relaxed κ = 0.01. In the case of
κ = 0, the contact normals are (correctly) exactly normal to the surface, and as soon as the
closest point shifts from one face to the other, the contact normals immediately rotate 90◦.
While this is expected behavior, this discontinuity in the gradient can prove troublesome
for simulation and control algorithms that rely on these contact normals not changing too
quickly. Alternatively, with a relaxed κ = 0.01, the contact normal smoothly rotates the 90
degrees as the face of the closest point changes. This is a result of the logarithmic barrier
smoothing out the sharp corner, and allows for continuous and smooth gradients even in
the presence of the discontinuity.

3.6 Conclusions

In this paper, we outline shortcomings with existing differentiable optimization tools,
namely the nonsmoothness of the gradients near inequality constraints and the inability to
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handle infeasible problems, and propose solutions to both of these problems. By relaxing
the solution to an optimization problem from tight tolerances to an intentionally relaxed
logarithmic barrier, unique and smooth gradients can be computed even from sharp edges
in the feasible set. This relaxation is straightforward and leverages existing routines within
existing primal-dual interior-point solvers. We also introduce an always-feasible quadratic
program where hard constraints are converted into ℓ1-penalties, and devise a customized
algorithm for solving problems of this form with limited added computational overhead.
With both of these innovations, consistent and reliable smooth gradients are demonstrated
in common robotic tasks where smoothness is a priority. Our fully differentiable and par-
allelizable solver written in JAX is available at www.github.com/kevin-tracy/qpax.
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Chapter 4
Atmospheric Entry Guidance

As scientific and crewed payloads have more demanding goals, precise atmospheric entry
guidance is playing an increasing role in mission success. State-of-the-art entry guidance
algorithms are structured in a predictor-corrector framework, where a simulation is used to
predict a trajectory, and corrections are then made to the control inputs. These guidance
methods are simple and effective, but current algorithms assume low lift-to-drag entry
vehicles, are limited to only bank-angle control, and have a limited ability to guarantee
the safety of the vehicle. We propose a new predictor-corrector entry guidance method
that formulates the correction step as a convex optimization problem. This allows for
more flexibility in specifying the vehicle’s dynamics and control inputs, and the ability to
explicitly handle safety constraints such as heating, pressure, and acceleration limits. We
test the new algorithm in Mars entry scenarios similar to the Mars Science Laboratory
with both bank-angle control and bank-angle plus angle-of-attack control, demonstrating
both its performance and ability to generalize to future vehicle capabilities.

The contents of this chapter have been previously published at IEEE Aerospace Con-
ference 2021 in Tracy and Manchester [173]

4.1 Introduction

In 1971 the Soviet Union’s Mars-2 spacecraft made history by entering the Martian at-
mosphere before impacting the surface. Nine days later, an identical Mars-3 spacecraft
performed the first soft-landing on the Martian surface, ushering in a new era in planetary
exploration. NASA followed with successful Mars landings in 1976 with Viking 1 and 2
and has since then landed and operated multiple robotic systems on the Martian surface
[97].

Entry vehicle architectures can be divided into three broad categories [97]: 1) Ballistic
entry is an uncontrolled descent with drag as the only force, 2) unguided ballistic-lifting
entry has an uncontrolled non-zero lift force, and 3) guided ballistic-lifting entry has some
control over the vehicle’s lift vector. Controlled entry guidance allows for the prioritization
of landing locations with scientific merit instead of just those that minimize risk to the
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vehicle.
The Mars Science Laboratory (MSL) carrying the Curiosity rover touched down in 2012

as the first Mars entry vehicle with guided ballistic-lifting entry. MSL had control over the
vehicle bank angle during entry, enabling control of the direction of the lift vector within
the lifting plane. While MSL dramatically reduced the size of the landing ellipse from
over 100 km to 10 km, its guidance is still too coarse for pinpoint landings. By developing
more performant entry guidance capabilities, entry vehicles could effectively place robotic
or crewed landers in desirable science collection areas, including high altitude sites.

Much of the work on guidance for low lift-to-drag entry vehicles originated with the
Apollo terminal guidance methods. These algorithms, as described in [64], rely on control
of the bank angle with simple switching manuevers to control the cross-range and down-
range errors. Slightly modified versions have been developed for use with more recent
Mars entry vehicles, such as in [119]. Current research investigates the use of predictor-
corrector algorithms [29] to improve the landing accuracy. A popular predictor-corrector
formulation that exhibits bank-angle switching behavior is the Fully Numerical Predictor-
corrector Entry Guidance (FNPEG) algorithm [103]. In the baseline FNPEG algorithm,
Newton’s method is used to solve for a static bank-angle that satisfies a terminal downrange
distance constraint, and the sign of the bank-angle is modulated to control crossrange errors
[101]. Here, the prediction phase is used to generate gradients for the terminal constraint,
and corrections are applied to the open-loop commanded bank-angle in an effort to satisfy
these terminal constraints. This framework is simple and effective but requires significant
added complexity for incorporation of safety constraints or changes to the vehicle control
inputs.

Trajectory optimization for offline planning of entry vehicle trajectories has been ex-
plored in [189] and [191], where the nonconvex optimal control problem was solved by
linearizing the nonlinear dynamics and constraints, solving a conic optimization prob-
lem with a trust region, and repeating until convergence. This successive-convexification
method was used instead of standard NonLinear Programming (NLP) solvers, like SNOPT
[61] or IPOPT [187], because it is able to directly handle second-order cone constraints
instead of relying on local linear approximations. Optimal trajectories computed offline
were then paired with an optimization-based tracking controller, as described in [189] and
[191]. While these formulations are able to stabilize a trajectory, there are no guarantees
that safety constraints can be satisfied online. Also, the computational complexity of the
trajectory-optimization formulation makes these methods intractable for real-time control
onboard an entry vehicle.

The Convex Predictor-corrector Entry Guidance (CPEG) algorithm proposed in this
paper combines ideas from trajectory optimization with the predictor-corrector guidance
framework by solving a constrained optimization problem during the correction step. First,
the dynamics of the entry vehicle with the current control plan are simulated to a target
altitude for a predicted trajectory. Next, the vehicle dynamics are linearized about the
predicted trajectory and a convex trajectory optimization problem is solved that minimizes
landing error. By solving for a correction using convex optimization, CPEG is able to
reason about the full state and control history to inform the correction instead of just the
final state. This also allows for the vehicle’s safety constraints, such as heating, pressure,
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and acceleration, to be explicitly included in the correction computation. Our specific
contributions in this paper are:

1. A general quasi-linear formulation of entry vehicle dynamics that is well-suited to
numerical optimization.

2. A predictor-corrector entry guidance algorithm with a highly generalizable correction
step utilizing convex optimization.

3. Customized trust regions and objective functions for entry vehicles with multiple
control modalities.

The paper proceeds as follows: In Section 4.2, the classic Vinh entry vehicle dynamics
are compared with a more modern Cartesian approach. In Section 4.3, the details of the
full nonconvex trajectory optimization problem are discussed. In Section 4.4, the CPEG
algorithm is derived. In Section 4.5, CPEG is validated on entry vehicles with bank-angle
control, as well as bank-angle and angle-of-attack control. Finally, Section 4.6 outlines our
conclusions and potential future research directions.

4.2 Entry Vehicle Dynamics

Despite much of the recent powered-descent guidance literature using Cartesian state rep-
resentations, entry vehicles are still most often represented in spherical coordinates. In this
section, the traditional entry vehicle dynamics denoted below as the “Vinh” model will be
discussed, as well as an alternative Cartesian formulation.

4.2.1 The Vinh Model

The classic Vinh model, presented in 1976 in [30] and again a few years Later in Vinh’s
textbook [185], has been the standard method for simulating entry vehicles for the past
45 years. Parameterizing the entry vehicle in spherical coordinates, the state in the Vinh
model contains familiar terms like latitude, longitude, and flight-path angle. Despite being
highly nonlinear and prone to scaling issues, it is the most common dynamics model in the
literature [30, 185, 186, 192, 190, 101, 53].

The dynamics in the Vinh model are calculated with the angle-of-attack, α, bank-angle,
σ, flight-path angle, γ, longitude, θ, latitude, ϕ, and heading angle, ψ. The resulting
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equations of motion over a planet that’s rotating with a constant angular velocity Ω are,

ṙ = V sin γ, (4.1)

θ̇ = V cos γ sinψ/(r cosϕ), (4.2)

ϕ̇ = V cos γ cosψ/r, (4.3)

V̇ = −D − sin γ/r2 + Ω2r cosϕ sin γ cosϕ− Ω2r cosϕ cos γ sinϕ cosψ, (4.4)

γ̇ = L cosσ/V +
(
V 2 − 1/r

)
cos γ/(V r) + 2Ω cosϕ sinψ + Ω2r cosϕ cos γ cosϕ/V (4.5)

+ Ω2r cosϕ sin γ sinϕ cosψ/V, (4.6)

ψ̇ = L sinσ/(V cos γ) + V cos γ sinψ tanϕ/r − 2Ω(tan γ cosψ cosϕ− sinϕ) (4.7)

+ Ω2r sinϕ cosϕ sinψ/(V cos γ), (4.8)

where r is the normalized radial distance from the center of the planet, V is the normalized
planet-relative velocity, and L and D are the magnitudes of the lift and drag accelerations.

This model is highly nonlinear in both the state and the control, even when the plan-
etary motion is ignored. While the planet’s angular velocity is assumed to be constant,
its inclusion in the dynamics still contributes significant nonlinearities. Because of this,
much of the literature ignores the planet’s angular velocity [189]. There are also scaling
issues present if these equations are naively implemented. Since r and V are not angles,
they are usually of a much larger magnitude than the rest of the state. This can lead
to poor accuracy in variable time-step integrators, as well as ill-conditioning in numerical
trajectory optimization.

4.2.2 Cartesian Entry Dynamics

We have found that entry vehicle dynamics are both simpler to derive and numerically
better-conditioned when represented in standard Cartesian coordinates instead of the
spherical coordinates used in the Vinh formulation. This state representation is popu-
lar with the powered-descent guidance community, albeit without any aerodynamic forces
in the dynamics [20, 3, 2].

We assume a planet-fixed frame P is aligned with an inertial frame N along the z axis.
The planet spins with angular velocity ω ∈ R3 in the positive z direction, making the
velocity of the entry vehicle the following:

Pv = Nv − ω × r, (4.9)

where Nv ∈ R3 is the inertial velocity, Pv ∈ R3 is the planet relative velocity, and r ∈ R3 is
the position of the entry vehicle in the planet frame. This expression can be differentiated
once more to provide the relationship between the inertial and planet-relative accelerations:

Pa = Na− 2(ω × Pv)− ω × (ω × r). (4.10)

The state of the entry vehicle can be parameterized with the planet-relative position vector
r, and planet relative velocity Pv denoted as just v, both expressed in the coordinates of
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Figure 4.1: The E frame is fixed to the entry vehicle, with ê1 in the direction of the specific
angular momentum vector, and ê2 = v̂ × ê1. When defined in this frame, the lift vector
can be expressed using only ê1 and ê2.

the planet frame. The Cartesian dynamics can now be written in state space as,[
v
a

]
=

[
0 I

−[ω×]2 −2[ω×]

] [
r
v

]
+

[
0

ag + aD + aL

]
, (4.11)

where [ω×] is the skew-symmetric cross product matrix,

[ω×] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4.12)

One of the main benefits of the dynamics in equation (4.11) is the linear kinematics.
This means that linear approximations of the relationship between position and velocity
are exact, and the only nonlinearities present are in the accelerations. The gravitational
acceleration in the direction of the planet’s center is expressed assuming simple spherical
gravity:

ag = −
µ

∥r∥3 r, (4.13)

where µ ∈ R is the standard gravitational constant for the given planet. The acceleration
caused by the drag force is in the direction opposing velocity, and is calculated as,

aD = − 1

2m
ρACd∥v∥v, (4.14)

where m ∈ R is the mass of the entry vehicle, ρ ∈ R is the atmospheric density, A ∈ R is
the aerodynamic reference area, and Cd ∈ R is the coefficient of drag. In this work, the
atmospheric density ρ ∈ R will be represented by a piecewise exponential function [53].

For the description of the lift acceleration, a reference frame is defined that describes
a plane about the entry vehicle that is orthogonal to the velocity vector. This two-
dimensional frame, referred to as the E frame and depicted in Fig. 4.1, has two basis
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vectors described by the following:

ê1 =
r × v
∥r × v∥ , (4.15)

ê2 =
v × ê1
∥v × ê1∥

. (4.16)

The magnitude of the lift vector is calculated as,

∥L∥ = 1

2m
CLρ(r)A∥v∥2, (4.17)

where CL ∈ R is the coefficient of lift. In the case where the entry vehicle only has control
over the bank-angle, the resulting lift acceleration can be described by the magnitude of
the lift and the bank-angle:

aL = ∥L∥(sin(σ)ê1 + cos(σ)ê2). (4.18)

In the case where the entry vehicle can control both the angle-of-attack as well as the
bank-angle, the lift vector can be written as,

aL = ∥L∥(ℓ1ê1 + ℓ2ê2), (4.19)

subject to the constraint ||ℓ21 + ℓ22|| ≤ 1. Here the lift acceleration is a linear function of
the control inputs, which is a key feature when this model is linearized in an optimization
problem. Both the Vinh model and the Cartesian model are nonlinear, but the Cartesian
model behaves significantly better under linearization, making it a far better candidate for
trajectory optimization.

4.2.3 State and Control Definitions

In the case where only the bank-angle is controlled, the state is augmented with the bank-
angle, and the sole control input is the derivative of this bank-angle with respect to time.
This allows for cost functions that specify desired behavior for the derivative of the bank-
angle, with the state and control as the following:

x =
[
rT vT σ

]
, (4.20)

u = σ̇. (4.21)

These dynamics are now in control-affine form with linear kinematics. For the case with
actuation of both the bank angle and angle-of-attack, the state and control are the follow-
ing:

x =
[
rT vT

]T
, (4.22)

u =
[
ℓ1 ℓ2

]T
, (4.23)

where ℓ1 and ℓ2 were defined in (4.19).
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4.3 Trajectory Optimization

Feedback control laws for entry vehicles suffer in performance due to the severe under-
actuation of the vehicle. This is, in part, due to the fact that an entry vehicle has very
limited ability to speed up or slow down in the along-track direction. To deal with this,
it makes more sense to solve the guidance problem with a holistic planning approach, one
that can reason about this limited control authority and plan for it. Therefore, we pose
this problem as a trajectory optimization problem, where a locally optimal state trajectory
and control plan can be solved for numerically.

4.3.1 Safety Constraints

Three key vehicle safety constraints — heating, pressure, and acceleration — are most de-
pendent on the atmospheric density. Unfortunately, this is also the part of the environment
in which there is the largest amount of uncertainty. The atmospheric density is often only
known to roughly within a factor of two, with even less known about the wind conditions
[53].

The heating constraint has to do with the max allowable heat rate that the ablative
heat shield can withstand [46]. This is measured in power per square centimeter, and it is
expressed as the following:

Q̇ = kq
√
ρV 3.15 ≤ Q̇max. (4.24)

This function is nonlinear but can be locally approximated with linear functions during
the correction step. The next safety constraint is the maximum dynamic pressure on the
entry vehicle, which is expressed as the following:

q = .5ρV 2 ≤ qmax. (4.25)

The last safety constraint is the maximum allowable normal load, which is the total aero-
dynamic force on the entry vehicle. This is expressed as a norm of the lift and drag forces:

a =
√
∥L∥2 + ∥D∥2 ≤ amax. (4.26)

4.3.2 Full Nonconvex Formulation

In order to formulate a convex correction problem, we first consider the full nonlinear
non-convex problem. First, the dynamics described in equation (4.11) are discretized with
an explicit integrator like the classic fourth-order Runge-Kutta method [123], giving a
discrete-time dynamics model of the form,

xk+1 = f(xk, uk,∆tk). (4.27)

No assumptions have been made about the control configuration in this dynamics model:
it can account for either bank-angle-only or bank-angle plus angle-of-attack control. The

39



full nonlinear trajectory optimization problem has the form,

minimize
x, u,∆t

ℓN(xN , uN) +
N−1∑
k=1

ℓk(xk, uk)

subject to xk+1 = f(xk, uk,∆tk)∀k, (4.28)

gk(xk, uk) ≤ 0 ∀k,
∆tmin ≤ ∆tk ≤ ∆tmax ∀k,

xN = xgoal,

where safety constraints (4.24)—(4.26) are included in the inequality constraint function
gk(xk, uk). Note that this is a free-final-time problem in which the ∆tk are decision variables
in addition to the states and controls. This is necessary due to the inability of the entry
vehicle to reach its goal state at an arbitrarily specified time. Problem (4.28) is nonconvex
due to both the nonlinear dynamics, as well as the variable time between knot points. It is
worth noting that, even with linear continuous-time dynamics, the discrete-time dynamics
constraints (4.27) become nonlinear when the time step is made to be a decision variable.

Trajectory optimization problems like (4.28) can be solved with a variety of methods.
One standard approach is to use an off-the-shelf NLP solver like IPOPT [187] or SNOPT
[61]. Alternatively, more specialized trajectory optimizers like ALTRO can be used [79,
84]. While computationally tractable using one of the described methods, the nonconvexity
of the problem means there are no available guarantees for the quality of the solution or
convergence of the solver. As a result, running nonconvex trajectory optimization onboard
safety-critical aerospace systems is unpopular, explaining the prevalence of simpler heritage
methods for entry guidance.

4.4 Convex Predictor-corrector

CPEG combines ideas from numerical trajectory optimization with the classic predictor-
corrector guidance framework: It uses a prediction step, in which the vehicle dynamics are
simulated until a target altitude is reached, combined with a corrector step that is based
on solving a local convex approximation of a nonlinear trajectory optimization problem to
steer the vehicle to the desired target. These steps are then repeated until convergence is
achieved. This section provides a detailed derivation of the CPEG algorithm.

4.4.1 Prediction and Dynamics Linearization

In the first stage of CPEG, the dynamics of the entry vehicle are simulated with a standard
Runge-Kutta method using the current nominal control trajectory, Ū , until a target altitude
is reached. We denote this predicted trajectory by X̄. After the prediction step, the
discrete-time nonlinear dynamics are approximated using a first-order Taylor series,

x̄k+1 + δxk+1 ≈ f(x̄k, ūk) + Akδxk +Bkδuk, (4.29)
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where Ak and Bk are the following Jacobians,

Ak =
∂f(xk, uk,∆tk)

∂xk

∣∣∣∣
x̄k,ūk

, (4.30)

Bk =
∂f(xk, uk,∆tk)

∂uk

∣∣∣∣
x̄k,ūk

. (4.31)

Subtracting the dynamics of the reference trajectory from both sides, the local linear
dynamics of trajectory corrections can be written as:

δxk+1 = Akδxk +Bkδuk. (4.32)

A crucial distinction between CPEG and sequential convexification methods [189, 106, 107],
is that trajectory iterates are always dynamically feasible, thanks to the prediction step.
This eliminates the possibility of inconsistent linearizations of the dynamics constraints
[130], in which no feasible correction trajectory exists. Specifically, there is always a trivial
solution to (4.32) of all zeros for δx and δu.

4.4.2 Cost Function

The cost function used in CPEG is comprised of a term that penalizes the miss distance
from the target and a term that penalizes specified control behaviors. For the penalty
on miss distance, putting a naive quadratic cost on the error between the final position
and the desired position is inappropriate since it also penalizes altitude errors. Instead,
only the position error projected onto the landing plane is penalized, effectively ignoring
altitude error. Since the altitude target is implicitly satisfied during the prediction step,
this allows for the correction to only apply changes to the control plan that minimize the
projected miss distance. The cost function for this projected miss distance is the following:

ℓmiss(δX, δU) = ∥W (rN + δrN − rgoal)∥22, (4.33)

where rN ∈ R3 is the final position in the reference trajectory, δrN ∈ R3 is the correction
computed for this position, and rgoal ∈ R3 is the desired final position for parachute
deployment. To project this error onto the landing plane, we define following projection
matrix,

W = I − ppT , (4.34)

where p is the unit vector normal to the planetary surface at the target position:

p =
rgoal
∥rgoal∥

. (4.35)

The second part of the cost function seeks to shape the control behavior. In the case of
bank-angle control, we consider two different control cost functions that produce qualita-
tively different behavior:

ℓσ,L1(δU) = λ∥σ̇k∥1, (4.36)

41



and

ℓσ,quad(δU) = λσ̇k
2, (4.37)

where λ is a scalar tuning parameter. The first cost function (4.36) penalizes the L1 norm
of the derivative of the bank-angle, resulting in bank-angle trajectories with a minimum
number of discrete switches. The second cost function (4.37) penalizes the square of the
bank-angle derivative, resulting in smooth bank-angle trajectories. For the bank-angle plus
angle-of-attack case, as described in (4.19), we apply a simple quadratic cost to the norm
of the controlled lift vector, effectively penalizing high angles of attack:

ℓσα(δU) = λ∥uk∥22. (4.38)

4.4.3 Constraints

Of the three nonlinear safety constraints, two can be linearized, and the third can be
converted to a conservative convex relaxation. For the heating and dynamic pressure con-
straints (4.24)–(4.25), a Taylor expansion of each is formed, approximating the constraint
to first-order. From here, a linearized inequality constraint can be directly included in the
convex correction problem. For these constraints, the linearized versions are:

[∇Q̇(x̄k)]T δxk ≤ Q̇max − Q̇(x̄k), (4.39)

[∇q(x̄k)]T δxk ≤ qmax − q(x̄k). (4.40)

The acceleration loading constraint (4.26) is nonlinear, but a conservative convex relaxation
can be derived in the form of a second-order cone constraint. First, the kinematics for the
velocity can be conservatively approximated as the following:

vk+1 = vk + ak∆t, (4.41)

ak =
vk+1 − vk

∆t
, (4.42)

ak =
v̄k+1 + δvk+1 − v̄k − δvk

∆t
. (4.43)

The maximum loading constraint can then be re-written as,

∥v̄k+1 + δvk+1 − v̄k − δvk∥ ≤ ∆t · amax, (4.44)

which is in the form of a convex second-order cone, and can be directly incorporated into
the correction problem.

The three safety constraints from equations (4.39), (4.40), and (4.44), are stacked into
a generic safety constraint function,

gsafety(δxk, δuk) ≤ 0. (4.45)
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4.4.4 Trust Region

To ensure that corrections are sufficiently small that the dynamics linearizations and con-
straint approximations remain accurate, a trust-region constraint is added to the convex
correction problem. While standard trust-region methods apply norm constraints to δX
and δU [130], insight into the entry guidance problem enables a more tailored approach.

The quality of the linearization presented in (4.32) is highly accurate for approximating
the vehicle kinematics, gravity, and atmospheric drag, but is much less accurate when
applied to the bank-angle in the bank-angle-only control case. Therefore, we design a
trust region that restricts corrections to the bank-angle, δσk, given the known accuracy of
small-angle approximations but allows large corrections to the other states. This approach
also allows us to avoid the need to adapt trust regions inside the solver, enabling faster
and more reliable convergence. We apply the following trust-region constraints to each
corrector problem:

∥δuk∥2 ≤ δumax (4.46)

|δσk| ≤ δσmax (4.47)

4.4.5 Convex Corrector Problem

For the case where the entry vehicle has control of only the bank-angle as described in
(4.18), the convex correction problem can be formulated as,

minimize
δX, δU

ℓmiss(δX, δU) + ℓσ(δU)

subject to Akδxk +Bkδuk = δxk+1,

gsafety(δxk, δuk) ≤ 0,

∥δuk∥2 ≤ δumax,

|δσk| ≤ δσmax,

(4.48)

where the miss cost function is described in (4.33), and the bank-angle cost function can
be either (4.36) or (4.37).

For the case where the entry vehicle has control over both bank-angle and angle-of-
attack as described in (4.19), the convex correction problem can be posed as:

minimize
δX, δU

ℓmiss(δX, δU) + ℓσα(δU)

subject to Akδxk +Bkδuk = δxk+1,

gsafety(δxk, δuk) ≤ 0,

∥uk + δuk∥2 ≤ 1.

(4.49)

These problems can be solved quickly and reliably by standard conic solvers such as
Mosek [124], COSMO [55], and ECOS [42].
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4.4.6 CPEG Algorithm

The full CPEG algorithm is detailed in algorithm 9. The inputs to CPEG are the cur-
rent position and the current control plan. From here, the dynamics of the entry vehicle
are simulated until parachute deployment with the current control plan. This predicted
trajectory is then discretized and linearized, resulting in dynamics Jacobians Ak and Bk

(equations (4.30)-(4.31)). From here, the convex correction problem is posed given the
control configuration and cost strategy. This convex optimization problem is solved, and
the correction δU is used to correct the control plan. The prediction-correction steps are
repeated until the norm of the correction being made to the control plan is below a specified
tolerance.

Algorithm 9 CPEG Algorithm

1: input x0, U ▷ nominal control plan
2: while ∥δU∥ > tolerance do
3: X̄, Ū = simulate(x0, U) ▷ predict trajectory
4: A,B = linearize(X̄, Ū) ▷ linearize about prediction
5: δX, δU = cvx(X̄, Ū, A,B) ▷ solve for correction
6: U += δU ▷ correct control plan
7: end while
8: return U ▷ return updated control plan

4.5 Numerical Experiments

Parameters roughly matching those of the Mars Science Laboratory (MSL) [119] were used
to test the CPEG algorithm. All scenarios begin at an altitude of 125 km above the Martian
surface with a Mars-relative velocity of 5.845 km/second. CPEG was implemented in the
Julia programming language [18], using the Convex.jl optimization modeling library [179],
and the Mosek [124] and OSQP [152] solvers. CPEG was validated on the following three
cases:

• Bank-angle control with L1 cost penalty, denoted σL1.

• Bank-angle control with quadratic penalty, denoted σ2.

• Bank-angle plus angle-of-attack control, denoted σ + α.

For the bank-angle cases, CPEG was arbitrarily initialized with a constant bank-angle
of zero, with noise added to the bank-angle derivative. For the bank-angle plus angle-of-
attack case, a similar approach was used, but noise was added to the normalized lift vector.
The final converged trajectories for the three cases are shown in figures 4.2 and 4.3. In all
of the cases, CPEG was able to successfully guide the entry vehicle to the target point at
the desired altitude.
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Figure 4.2: Altitude and downrange distance from the converged trajectories from CPEG
on the three specified cases. The σL1 case is with bank-angle control and an L1 penalty
on bank-angle derivative, σquad is bank-angle only with a quadratic penalty on bank-angle
derivative, and σ + α is control over both bank-angle and angle-of-attack. Due to the
differences in control authority and cost function, all three converge on different trajectories
that hit the target position at parachute deployment.
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Figure 4.3: Crossrange and downrange trajectory data from the converged trajectories
from CPEG on the three specified cases. The cases with only control over the bank-angle
have to do a bank reversal to hit the target, whereas the case with control over bank-angle
and angle-of-attack is able to leverage the full lift control to avoid the switching.
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Figure 4.4: Predicted entry vehicle trajectories for the bank-angle only L1 penalty case,
as seen by the altitude and downrange data. As the iterates continue, the entry vehicle
converges on a trajectory that reaches the target at the 10km altitude mark.

4.5.1 Bank-Angle Control

For the case where the entry vehicle has only bank-angle control, the convergence of CPEG
can be observed in figures 4.4 and 4.5 for the case with an L1 cost on the bank-angle
derivative, and figures 4.6 and 4.7 with a quadratic cost. These plots show the output of
the prediction step of CPEG, where the color of the predictions is blue for the first iteration
of the algorithm and turns purple, then pink for later iterations. After convergence, the
two bank-angle profiles that CPEG produced for the L1 and quadratic cost functions are
shown in figure 4.8. The L1 cost on the derivative of the bank-angle encouraged sparsity
in this derivative, resulting in a bank-angle profile that switches between constant bank-
angles. For the case with a quadratic cost on the bank-angle derivative, the resulting
bank-angle profile is smooth with no discrete switching behavior.

4.5.2 Bank-Angle and Angle-of-Attack Control

As described by the dynamics in equation (4.19), the control input for this case is the lift
vector itself in the directions orthogonal to the velocity vector. This allows for manipulation
of both the bank-angle and angle-of-attack and is guaranteed to be within the maximum
allowable lift by the unit norm constraint in equation (4.49). In this control case, the
control input Jacobian is constant and independent of the nominal control plan, making
the linearization significantly more accurate than the bank-angle-only case. As a result, the
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Figure 4.5: Predicted entry vehicle trajectories for the bank-angle only L1 penalty case, as
seen by the crossrange and downrange data.
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Figure 4.6: Predicted entry vehicle trajectories for the bank-angle only quadratic penalty
case, as seen by the altitude and downrange data. The
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Figure 4.7: Predicted entry vehicle trajectories for the bank-angle only quadratic penalty
case, as seen by the crossrange and downrange data.
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Figure 4.8: Bank-angle only control plans for both the L1 and quadratic cost cases. The L1
cost motivated a bang-bang switching style bank-angle profile. The quadratic cost resulted
in a smooth and continuous bank-angle profile.
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Figure 4.9: Predicted entry vehicle trajectories for the bank-angle and angle-of-attack case,
as seen by the altitude and downrange data.

convergence of CPEG with bank-angle plus angle-of-attack control is significantly faster
than with the bank-angle alone. The evolution of the predicted trajectories is shown in
figures 4.9 and 4.10, with the same coloring scheme as the bank-angle only section. After
convergence, the control inputs were converted back into bank-angle and angle-of-attack
and shown together in figure 4.11.

4.6 Conclusion

This paper proposes an improved version of the classic predictor-corrector entry guidance
scheme in which the correction step is formulated as a convex optimization problem. Two
control strategies were tested with CPEG: bank-angle control, and bank-angle plus angle-
of-attack modulation. For the bank-angle-only case, cost functions that penalized the
derivative with an L1 cost and a quadratic cost were both demonstrated, resulting in
dramatically different optimal bank-angle profiles. For the case with both bank-angle
and angle-of-attack control, the quality of the dynamics linearization was accurate enough
that CPEG was able to converge on an optimal trajectory in just a few iterations. An
implementation of CPEG running all of the examples in this paper is available at https:
//github.com/RoboticExplorationLab/EntryGuidance.jl.
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Figure 4.10: Predicted entry vehicle trajectories for the bank-angle and angle-of-attack
case, as seen by the crossrange and downrange data.
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Figure 4.11: Bank-angle and angle-of-attack profiles for the case where both angles are
being controlled. CPEG was able to converge on this control plan in just three iterations.
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Chapter 5
Robust Entry Guidance with Atmospheric
Adaptation

Robust atmospheric entry guidance for blunt-body entry vehicles with bank angle mod-
ulation is achieved by combining online atmospheric density estimation with an updated
version of the Convex Predictor-corrector Entry Guidance (CPEG) algorithm. During at-
mospheric entry, a square-root Extended Kalman Filter is used to estimate a ratio between
the density of the experienced atmosphere with that of an approximate model, which is
spline-fit based on MarsGRAM perturbed data. The information from this filter is used to
modify the approximate model used by the guidance algorithm. The proposed update to
CPEG includes time as a decision variable, dramatically improving the robustness of the
algorithm. CPEG predicts the trajectory at each control call with a nonlinear simulation
followed by a single convex trajectory optimization problem that updates the commanded
bank angle derivative. The robustness and performance of this estimator and controller
guidance architecture are demonstrated on a wide range of realistic Martian atmospheres
and is able to achieve state-of-the-art accuracy with respect to altitude-triggered parachute
deployment.

The contents of this chapter have been previously published at IEEE Aerospace Con-
ference 2021 in Tracy, Falcone, and Manchester [168]

5.1 Introduction

Entry into the Martian atmosphere refers to the phase of Entry, Descent, and Landing
(EDL) that occurs between the point at which the hypersonic entry vehicle first interfaces
with the planet’s sensible atmosphere and the point at which the supersonic parachute is
deployed. It is during this portion of the EDL that the vehicle is subjected to the most
demanding flight conditions, during which both peak acceleration and peak heating are
experienced [193]. Large uncertainties in models of the Martian atmospheric environment
make entry guidance challenging, and significantly degrade landing accuracy, where the
landing accuracy is the distance between the landing target site and the actual landing
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site. Actual atmospheric density can deviate from predictions by a factor of two or more
[85], requiring guidance laws to combat uncertainty with frequent re-planning and reliance
on conservative initial entry conditions. These approaches ultimately reduce performance
and limit the potential landing sites that can be accessed on Mars [97]. To enable precision
landing, which could potentially increase the number of reachable sites of high scientific
interest, we propose a new approach to entry guidance that can strategically account for
and reduce the atmospheric model uncertainty during guided entry.

Figure 5.1: Cartoon representation of entry, descent, and landing.

In the last few decades, predictor-corrector guidance algorithms have become the state-
of-the-art; these have offered steadily improving landing accuracy with modest compu-
tational costs. These methods, like PredGuid [142, 141] and FNPEG [102], predict the
trajectory of the entry vehicle with a nonlinear simulation, then use derivative or “sen-
sitivity” information from the simulation to improve or “correct” the control plan [103,
28]. This predictor-corrector framework offers improved landing accuracy compared to
Apollo-era entry guidance methods [27] while being relatively simple to implement with
low computational complexity. However, a significant drawback of traditional predictor-
corrector guidance methods is their inability to generate complex control policies; many
such methods are restricted to solving for a static bank angle, which means that the ini-
tial bank angle control profile predicted for the whole entry phase is considered constant;
however, only during the prediction and correction phase, the guidance uses independent
downrange and crossrange control to determine when the sign of the bank angle should flip.
This simplicity severely limits the sophistication of the guidance method, and the resulting
performance can chatter with multiple aggressive bank angle switches. Another limitation
of existing predictor-corrector guidance strategies is their inability to incorporate real-time
information about the Martian atmosphere, which is the largest source of uncertainty in
the vehicle’s dynamics, for prediction and correction purposes.

Recently, there has been a growing interest in trajectory optimization methods for
open-loop entry guidance for both Earth and Mars. This approach, in which the guidance
problem is formulated as a numerical optimization problem, enables algorithms that can
reason about the dynamics of the vehicle and constraints like actuator limits, state bounds,
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and heating limits. These optimization problems can be solved by a variety of numerical
methods. As an example, sequential convex programming, in which a non-convex optimiza-
tion problem is iteratively convexified and solved until convergence, has recently become
popular [189, 192, 107, 159, 160, 106]. Alternatively, the trajectory optimization problem
can be converted into a nonlinear program [17] and solved by a variety of off-the-shelf
solvers, like SNOPT [61] or Ipopt [187], or by a more specialized trajectory optimiza-
tion solver like ALTRO [79, 82]. While these trajectory optimization guidance methods
offer more sophisticated and performant control plans than classical predictor-corrector
methods, they can be prohibitively complex to implement on resource-constrained flight
computers, and are still unable to account for real-time information about the atmosphere.

A middle ground between simple predictor-corrector guidance schemes and offline tra-
jectory optimization is the Convex Predictor-corrector Entry Guidance algorithm (CPEG)
[177]. This method uses the same predictor-corrector framework as existing methods, but
instead of solving for a simple static bank angle, it forms a convex trajectory optimiza-
tion problem that solves for the correction to the nominal control plan. This approach
enables the direct inclusion of any actuator or safety constraints and the ability to reason
about complex control policies and the dynamics of the vehicle over the whole trajectory.
By forming the convex trajectory optimization problem with a dynamics model linearized
about the prediction rollout, the problem is guaranteed to always be feasible, and the con-
vexity of the problem guarantees that an optimal solution can be computed in polynomial
time [24].

This work proposes an improvement to the CPEG algorithm that includes time as an
optimization variable, allowing for the generation of trajectories with a free final time. This
modification allows for significantly more flexibility when handling scenarios with multiple
potentially successful control policies, since many trajectories can all be expressed using
the same number of optimization variables. The absence of this feature in the original
CPEG algorithm resulted in a lack of robustness when run online with significant model
uncertainty. Additionally, this work directly addresses the main source of the uncertainty
in the vehicle dynamics – the atmospheric density – by estimating information about the
atmosphere online and including it in the approximate model used by CPEG. Our specific
contributions include:

1. A free-final-time extension of the Convex Predictor-corrector Entry Guidance algo-
rithm

2. An estimation architecture for atmospheric density and an atmospheric approximate
model

3. Validation of the combined controller and estimator on realistic density and wind
dispersions from MarsGRAM [85]

This paper proceeds by first describing the dynamics of the entry vehicle in Cartesian
coordinates in Section 5.2, followed by the free-final-time version of CPEG in Section
5.3. The atmospheric density estimation approach is detailed in Section 5.4. Numerical
experiments using Monte-Carlo sampling of atmospheric parameters from MarsGRAM are
presented in Section 5.5. Finally, Section 5.6 summarizes our conclusion.
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5.2 Entry Vehicle Dynamics

This work considers a blunt-body entry vehicle in the Martian atmosphere with the ability
to modulate its bank angle σ ∈ R. These entry vehicles are traditionally described and
simulated in spherical coordinates using the “Vinh” model [30, 185, 186, 192, 190, 102, 53].
While this model is ubiquitous and well-studied, it suffers from numerical scaling issues
due to the state vector including angles as well as distance and velocity, and is highly
nonlinear in both the state and the control input. These shortcomings make optimization
challenging and numerically unreliable. Alternatively, the state and dynamics of the entry
vehicle can be equivalently described in a Mars-fixed Cartesian reference frame. This
parametrization is more common in the powered-descent guidance literature [20, 3, 2], and
has much better numerical scaling, as well as linear kinematics, both of which make it a
better fit for optimization-based control methods as detailed in [171]. The dynamics of the
entry vehicle with this state representation are the following:

ṙ = v, (5.1)

v̇ = aL + aD + ag − 2(ω × v)− ω × (ω × r). (5.2)

The aerodynamic accelerations from lift and drag are dependent on the vehicle velocity
relative to the atmosphere, including wind. The wind vector w is expressed in the Mars-
fixed frame, and the relative velocity is simply vrel = v+w. The magnitude of the lift and
drag accelerations can then be computed as follows:

L =
1

2m
ρACL∥vrel∥2, (5.3)

D =
1

2m
ρACD∥vrel∥2. (5.4)

The hypersonic coefficients, CL and CD have been evaluated through the Newtonian flow
theory for a blunted body, specifically:

CA = (1− sin δ4)
r2nose
r2base

+ (2 sin δ2 cosα2 + cos δ2 sinα2)

(
1− r2nose

r2base
cos δ2

)
, (5.5)

CN =

(
1− r2nose

r2base
cos δ2

)
cos δ2 sin 2α, (5.6)

CL = CN cosα− CA sinα, (5.7)

CD = CA cosα + CN sinα, (5.8)

where CA is the axial force coefficient, CN is the normal force coefficient, δ is the cone
angle of the blunted-cone vehicle, α is the angle of attack, rbase is the base radius, rnose is
the nose radius of the hypersonic vehicle.

The direction of the drag acceleration is in the opposite direction of the relative velocity,
expressed as:

aD = −D vrel
∥vrel∥

. (5.9)
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The lift acceleration is directed using the bank angle σ, and is modeled and represented
with two basis vectors ê1 ∈ R3 and ê2 ∈ R3, where together they span the plane orthogonal
to the relative velocity of the vehicle in the atmosphere. These aerodynamic basis vectors
are constructed as the following:

ê1 =
r × vrel
∥r × vrel∥

, (5.10)

ê2 =
vrel × ê1
∥vrel × ê1∥

. (5.11)

Using these basis vectors, the lift acceleration can be computed as the following:

aL = L(sin(σ)ê1 + cos(σ)ê2). (5.12)

The acceleration due to gravity can be calculated using any number of established meth-
ods ranging in fidelity from simple two-body gravity [123], to a more complex spherical
harmonic expansion of the geopotential [71, 57].

The largest amount of uncertainty in the dynamics of the entry vehicle comes from
the atmosphere. Both the atmospheric density ρ, as well as the wind vector w are highly
uncertain. To visualize this uncertainty, Mars GRAM [85] was used to generate dispersions
for these two parameters, which are shown in Fig. 5.2 and Fig. 5.3. A summary of the
parameters used to run Mars GRAM is presented in Table 5.1. For the generation of atmo-
spheric data points in highly perturbed environments, Mars GRAM not only uses random
Monte Carlo samples that re-initialize the random number seed (NR1) for each sample but
also has been set for different zoffsets, which are constant height offsets that modify the
atmospheric density. Specifically, positive offsets increase density, while negative offsets
decrease density. In addition, rpscale, the random perturbation scale was also set to the
maximum, with increasing this factor intensifying the magnitude of the perturbation. The
data have also been evaluated in the context of a global dust storm, through INTENS,
which changes the dust storm intensity.

Table 5.1: Mars GRAM nominal and dispersion parameters

Parameter Value Parameter Value
Initial Altitude, km 125 NR1 [1,5001]

Date 6 August 2012 zoffset, km Uniform Dist., [-3.25,3.25]
Time 5:30:00 rpscale 2

Final Altitude, km 10 INTENS 2

Since aerodynamic acceleration is the dominant term in the dynamics at the high
speeds an entry vehicle experiences, the uncertainty in the atmospheric density results in
a highly uncertain dynamics model. The uncertainty in the wind contributes to the model
uncertainty, but less so than the density.
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Figure 5.2: Dispersion of the atmospheric density as a function of altitude calculated with
Mars GRAM. The dynamics of the entry vehicle are heavily influenced by this density,
and the dramatic uncertainty of this value motivates the need for more robust guidance
schemes.

November 10, 2024
DRAFT

−80 −60 −40 −20 0 20 40 60

20

40

60

80

100

Wind Velocity, m/s

A
lt
it
u
d
e,

k
m

East
North

Figure 5.3: Dispersions of the east and north wind velocities in the Martian atmosphere
as a function of altitude calculated with Mars GRAM. This range of atmospheric wind
profiles is used in the Monte Carlo testing of the proposed entry guidance algorithm.
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5.3 CPEG

Predictor-corrector guidance algorithms are a simple and effective way to control under-
actuated systems like the entry vehicle. These methods all share a general framework in
which a nominal control policy is used to simulate a predicted trajectory, then a correc-
tion is made to the nominal control policy based on this prediction. Predictor-corrector
methods have been the state of the art for entry guidance of blunt-body vehicles, but they
are not without their shortcomings. Existing methods like FNPEG are only able to reason
about simple static bank angle policies, and rely on independent crossrange and downrange
logic to modulate the bank angle [103]. Alternatively, offline trajectory optimization allows
for more complex control policies and the direct inclusion of constraints, but is significantly
more expensive than predictor-corrector methods. A trajectory optimization problem in
its most general form is the following,

minimize
x1:N , u1:N−1

ℓN(xN) +
N−1∑
k=1

ℓk(xk, uk)

subject to xk+1 = f(xk, uk) k = 1 . . . N − 1, (5.13)

gk(xk, uk) ≤ 0 k = 1 . . . N − 1,

umin ≤ uk ≤ umax k = 1 . . . N − 1,

xmin ≤ xk ≤ xmax k = 1 . . . N

where x is the state, u is the control, ℓ is the cost function, f(x, u) is the discrete dynamics
function, and g(x, u) is a general constraint function. Problem (5.13) can be solved with a
multitude of available trajectory optimization solvers, but they are prohibitively complex
to run on board the entry vehicle.

5.3.1 Baseline CPEG

The Convex Predictor-corrector Entry Guidance (CPEG) algorithm, introduced in [171],
seeks to find a middle ground between simple predictor-corrector guidance methods and
offline trajectory optimization. This is achieved by adopting the predictor-corrector frame-
work, but solving a convex trajectory optimization problem for the correction instead of a
simple update to a static bank angle like in FNPEG. This approach allows CPEG to reason
about sophisticated control trajectories as well as the dynamics of the vehicle throughout
the entirety of the trajectory. The convex optimization problem that makes up the correc-
tion portion of the algorithm is guaranteed to be feasible, and its optimum can be solved
for at real-time rates [115].

In order for problem (5.13) to be convex, the cost and constraint functions must be
convex. This means that problems with nonlinear dynamics, like the entry vehicle, must
be approximated. We linearize the discrete dynamics function f(x, u) about the predicted
trajectory (x̄, ū):

x̄k+1 + δxk+1 ≈ f(x̄k, ūk) + Akδxk +Bkδuk, (5.14)
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where Ak and Bk are the following Jacobians,

Ak =
∂f(xk, uk)

∂xk

∣∣∣∣
x̄k,ūk

, (5.15)

Bk =
∂f(xk, uk)

∂uk

∣∣∣∣
x̄k,ūk

. (5.16)

Since the prediction was dynamically feasible, and x̄k+1 = f(x̄k, ūk), equation (5.14) is
reduced to

δxk+1 ≈ Akδxk +Bkδuk. (5.17)

From here, the convex correction problem is posed as,

minimize
δx1:N , δu1:N−1

ℓN(x̄N + δxN) +
N−1∑
k=1

ℓk(x̄k + δxk, ūk + δuk)

subject to δxk+1 = Akδxk +Bkδuk k = 1 . . . N − 1, (5.18)

gk(x̄k + δxk, ūk + δuk) ≤ 0 k = 1 . . . N − 1,

umin ≤ uk ≤ umax k = 1 . . . N − 1,

xmin ≤ xk ≤ xmax k = 1 . . . N,

δumin ≤ δuk ≤ δumax k = 1 . . . N − 1,

δxmin ≤ δxk ≤ δxmax k = 1 . . . N,

where the bounds on δx and δu serve as a customizable trust region that ensures the step
direction stays within a region of the state space where the linearization is accurate [130].
Since the linearization is evaluated about the dynamically feasible predicted trajectory,
this optimization problem is guaranteed to have a feasible solution of all zeros for δx and
δu, eliminating one of the largest vulnerabilities in real-time optimization-based control.

The full baseline CPEG algorithm is shown in Algorithm 9, where an initial condition
and nominal control policy are used to simulate the entry vehicle until parachute deploy-
ment (the prediction), a linearized model is evaluated about this predicted trajectory, and
a convex trajectory optimization problem (5.18) is solved for the correction.

5.3.2 Variable-Time CPEG

We now extend CPEG to handle free-final-time problems where time is a decision variable.
In the baseline algorithm, the prediction is done with a fixed time step and the simulation
simply terminates when a parachute deployment trigger is satisfied. This means that the
corrected control policy can result in a subsequent prediction with a different number of
time steps. This characteristic of the baseline algorithm results in decreased robustness
when there are multiple cost-equivalent trajectories in the cost landscape. In this case,
CPEG can chatter between two or more control policies that are of different lengths but
have equal cost.
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To address this issue, an updated version of CPEG is proposed in this work that treats
time as an explicit optimization variable, allowing for the time of parachute deployment
to effectively be decided by the optimization solver, instead of solely by the prediction
step. This updated version of CPEG is significantly more robust to chattering. The free-
final-time modification can be incorporated into the existing CPEG framework by simply
including the time step for each knot point as a control input. The resulting state variable
x ∈ R7 and control variable u ∈ R2 are the following:

x = [rT , vT , σ]T , (5.19)

u = [σ̇,∆t]T , (5.20)

where ∆t ∈ R is the size of the time step. We use the following cost function:

J(x, u) = γ∥rN − rtarget∥2 +
N−1∑
k=1

βσ̇2
k + (∆tk −∆ttarget)

2, (5.21)

where γ ∈ R+ and β ∈ R+ are positive cost weights, rtarget ∈ R3 is the target position,
and ∆ttarget ∈ R+ is target time-step size. These weights should be tuned such that the
largest penalty is applied to the terminal position accuracy, and a sufficient penalty exists
on the time-step size to keep the time steps positive and reasonable.

Each control correction requires the solution of a convex Quadratic Program (QP), of
which there are many fast and robust solution methods available. This work utilized a
custom implementation of the primal-dual interior point solver detailed in [115] and [183].
At the start of the QP solver, the inequality constraints are temporarily omitted and the
closed-form solution to the equality-constrained QP is checked for feasibility. In many
cases, the inequality constraints are inactive at the optimum, and this approach is able to
solve the QP at the cost of solving a single linear system.

5.4 Atmospheric Estimation

During atmospheric entry guidance, the largest source of uncertainty in the dynamics comes
from the atmosphere. The density of the atmosphere is highly variable based on the time
of the year, weather, dust conditions, temperature, and space weather. Mars GRAM [85]
is the highest fidelity tool available for the simulation of the Martian atmosphere, and it
was used to sample 5,000 potential atmospheric density profiles. 1,000 of these profiles are
shown in Fig. 5.2, where there is significant uncertainty at higher altitudes, with better
certainty at lower altitudes, though still varying by 10− 20%. Because of this uncertainty,
open-loop control policies perform poorly.

To manage this uncertainty, we propose a simple and effective method for estimating
critical information about the atmospheric density online during the entry process. The
density of the Martian atmosphere roughly follows an exponential law, such that the differ-
ence in density between the surface and 125 km altitude, which is considered in this study
as the entry interface, spans several orders of magnitude. Because of this large variation in
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magnitude, estimating the density directly in a Kalman Filter is numerically challenging.
Another possible approach to tackle atmospheric uncertainties would be to directly model
the atmosphere as an exponential and estimate the surface density and scale height [111],
but this approach suffers from severe ill-conditioning because the exponential dramatically
amplifies errors at higher altitudes [69, 45].

In place of estimating some parametrized version of the atmospheric density profile
from scratch, we use an approach similar to [144] where a Kalman filter for estimating the
ratio between the observed and nominal atmospheres:

kρ =
ρobserved
ρnominal

, (5.22)

where ρnominal is computed offline and stored. Estimating kρ directly is better behaved
numerically because the estimator is simply looking to modify an existing approximate
density profile, and the estimated value will always be near 1, regardless of altitude. The
state and control for this filter are the following:

xkf = [rT , vT , σ, kρ]
T , (5.23)

ukf = σ̇, (5.24)

where the dynamics for this state representation are the same as in section 5.2, with
the exception that ρ = kρ · ρapproximate. The measurement model is assumed to come
directly from the navigation system, with additive Gaussian white noise. To estimate kρ
effectively in the presence of highly variable dynamic pressure, a Square-Root Extended
Kalman Filter (SQEKF) is used that allows for twice the dynamic range of the standard
Extended Kalman Filter (EKF) [88]. This increased range and numerical robustness help to
manage the potentially ill-conditioned covariance matrices present during entry guidance.
A simple version of an SQEKF is demonstrated in [167] that leverages a highly mature QR
decomposition routine to handle a majority of the computation [154].

The SQEKF takes a system of the following form:

xk+1 = f(xk, uk) + wk, (5.25)

yk = g(xk) + vk, (5.26)

where f(x, u) is the discrete time dynamics function, g(x) is the measurement function,
and w ∼ N (0,W ) and v ∼ N (0, V ) are the process and sensor noise terms, respectively.
The SQEKF is able to achieve better precision than the standard EKF by representing
covariance matrices by their upper-triangular matrix square roots (Cholesky factors) [149,
182, 14]. Using this notation, the SQEKF algorithm from [167] is shown in Algorithm 10,
where ΓW and ΓV are the upper triangular Cholesky factorizations of W and V , and the
function qrr returns the upper triangular R factor from a QR decomposition [154, 79]. The
mean of the estimate is µt|t, and the covariance Σ is represented with its matrix square root
F such that F TF = Σ. The performance of this filter on a realistic atmosphere sample
from Mars GRAM is shown in Fig. 5.4.
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Algorithm 10 Square Root Extended Kalman Filter

1: function sqkf(µt|t, Ft|t, ut, yt+1,ΓW ,ΓV )
2:

3: At = ∂f/∂x|µt|t,ut ▷ dynamics Jacobian
4: µt+1|t = f(µt|t, ut) ▷ state prediction
5: Ft+1|t = qrr(Ft|tAT

t ,ΓW ) ▷ covariance prediction
6:

7: Ct = ∂g/∂x|µt+1|t ▷ measurement Jacobian
8: z = yt+1 − g(µt+1|t) ▷ measurement innovation
9: G = qrr(Ft+1|tCT

t ,ΓV ) ▷ innovation covariance
10: L = [G−1(G−TCt)F

T
t+1|tFt+1|t]T ▷ Kalman gain

11:

12: µt+1|t+1 = µt+1|t + Lz ▷ state update
13: Ft+1|t+1 = qrr(Ft+1|t(I − LCt)

T ,ΓVL
T ) ▷ covariance update

14:

15: return(µt+1|t+1, Ft+1|t+1)
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Figure 5.4: Results from the atmospheric density estimator during entry guidance where
the ratio between the actual and nominal densities, kρ, is shown alongside the true value.
There is large uncertainty in the higher altitudes where the atmosphere is very thin, and
again at lower altitudes where the velocity of the vehicle is such that aerodynamic forces
are not as dominant in the dynamics.
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5.5 Numerical Experiments

To validate the combined controller and estimator architecture, 1,000 Monte Carlo runs
were used to test the robustness and performance of the algorithms. Each Monte Carlo
run consists of an atmospheric density and wind sampled from Mars GRAM, as shown in
Fig. 5.2 and Fig. 5.3. An initial position dispersion with a standard deviation of 1 km and
initial bank angle dispersion of 5 degrees was used to further disambiguate between runs.
The initial conditions coincide with the Mars Sample Return (MSL) initial conditions;
specifically, the initial position had a mean altitude of 125 km, with a flight path angle
of -15.5 degrees and entry velocity of 5.85 km/s [26, 193]. The target was 632 km down
range and 7.9 km cross range, with a parachute deployment triggered at 10 km altitude.
Furthermore, the hypersonic vehicle considered has the same characteristics of the MSL
vehicle; specifically, the vehicle is a 70 degrees sphere-cone, nose radius equal to 1.125 m,
a base radius equal to 2.25 m, and an entry mass of 2800 kg [26].

The variable-time CPEG algorithm was run with a nominal time step size of 2 seconds
until the length of the trajectory was less than 50 knot points, at which point the nominal
time step was lowered to 0.1 seconds. This algorithm was run at 5 Hz with one convex
correction solution at each time step, 94% of which were solved in a single iteration of
the QP solver. A trust region was used to keep the updated trajectory in an area of the
state space where the linearized dynamics model is still accurate, with |δσ| ≤ 20◦ and
|δ∆t| ≤ 0.1. The SQEKF was initialized at an altitude of 60 km, and the estimated kρ
value was used in the dynamics model in CPEG. The measurement model in the SQEKF
assumed full state observations from the navigation system, with conservative measurement
error standard deviations of 100 meters for the position, and 20 cm/s for the velocity.

All 1,000 Monte Carlo runs were successful in deploying the parachute within 1km of
the target, with the trajectories shown in Fig. 5.5 and Fig. 5.6. Depending on the specific
atmosphere and initial perturbation, there were two families of trajectories that the entry
vehicle traversed. The bank-angle profiles for these trajectories are shown in Fig. 5.8. The
terminal errors for these runs are shown in Fig. 5.7, with each individual run shown as
well as a 3σ ellipse.

To demonstrate the effectiveness of the atmospheric adaptation, the same 1,000 Monte
Carlo runs were executed with and without adaption and the errors are shown in Fig.
5.10. The terminal errors for the runs with adaptation have significantly lower errors than
the same runs without adaptation. The statistics from these terminal errors are shown in
Table 5.2, showing a 37% decrease in the mean error, a 33% reduction in median error,
and a 49% smaller maximum error with the atmospheric adaptation turned on.

Table 5.2: Comparison of the parachute deployment error for variable time CPEG with
and without the atmospheric adaptation. With the adaptation on, the mean, median, and
maximum errors are all reduced.

Mean Error Median Error Maximum Error
Adaptation Off 0.353 km 0.287 km 1.485 km
Adaptation On 0.223 km 0.193 km 0.758 km
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Figure 5.5: Downrange and crossrange distances from the point of atmospheric interface for
1,000 Monte Carlo runs with variable-time CPEG and atmospheric estimation. Depending
on the initial conditions and the atmosphere, not all the trajectories take the same route.
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Figure 5.6: Altitude and downrange history for 1,000 Monte Carlo runs that terminate
at an altitude of 10km. Based on the initial perturbation and atmosphere, there are two
common paths that the entry vehicle takes to get to the target, one maintaining a higher
altitude than the other.
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Figure 5.7: Terminal errors for parachute deployment for the 1,000 Monte Carlo runs as
shown in downrange and crossrange errors. Each terminal error is shown, as well as an
ellipse denoting the 3σ bounds.
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Figure 5.8: Bank-angle profiles for the 1,000 Monte Carlo runs. The initial bank angle
varies as it was part of the dispersion, and depending on this initial condition and the
atmosphere sampled during the run, one of two families of control approaches was taken.
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Figure 5.9: Maximum slew rate for each of the 1,000 Monte Carlo runs. These maximum
slew rates are tightly coupled around 3.2 deg/s, well below the 20 deg/s constraint.
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Figure 5.10: Comparison of the terminal position errors from 1,000 Monte Carlo runs
where atmospheric adaptation was switched on and off. The spread of the terminal errors
is significantly tighter and closer to the origin for the cases with adaptation on.
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5.6 Conclusions

This work presents a combined estimator and controller architecture for atmospheric entry
guidance in the Martian atmosphere. Atmospheric adaptation is accomplished with a
square-root extended Kalman Filter that estimates the ratio of observed atmosphere to a
nominal model computed offline, and uses this estimated ratio to modify the atmospheric
model used in the controller. The guidance portion was accomplished using a variant of
the convex predictor-corrector entry guidance algorithm (CPEG) that has been modified to
include time as an optimization variable. This guidance algorithm is based on the predictor-
corrector framework in which a nonlinear simulation is performed from the current initial
condition and nominal control policy, and information from this prediction is used to
correct the nominal control policy. By solving for this correction using convex trajectory
optimization, CPEG is able to explicitly reason about the dynamics of the vehicle through
the entirety of the trajectory and formulate a sophisticated control plan.

The estimator and controller were validated with a 1,000 Monte Carlo simulations in
which atmospheric density and wind profiles were sampled from Mars GRAM and the
initial conditions of the entry vehicle were varied. With realistic noise levels, the median
miss distance in these 1,000 runs was 193 meters, compared with a median miss distance
of 287 meters with the atmospheric adaptation turned off. In 94% of the control calls in
these 1,000 runs, the convex optimization problem was able to be solved in closed form
with the solution to just one linear system. We believe that this reflects a substantial
accuracy improvement over prior entry guidance methods that do not adapt to unmodeled
atmospheric uncertainties, with only a modest increase in computational cost.

66



Chapter 6
Ultra-Fine Pointing for Nanosatellite
Telescopes With Actuated Booms

The smallsat revolution has impacted the architecture of most modern satellites with the
notable exception of fine-pointing space telescopes. Conventional attitude control hardware
scales poorly as the spacecraft gets smaller, resulting in significant mass and performance
penalties for nanosatellites with strict pointing requirements. This paper presents a novel
attitude actuation and planning strategy that utilizes actuated booms with tip masses
and magnetorquers for three-axis pointing and momentum desaturation. The speed of the
booms is an appropriate match for the slowly varying environmental disturbance torques
encountered in low-Earth orbit. As a result, these booms do not create the high-frequency
jitter that reaction wheels do, lessening the need for complex second-stage correction hard-
ware in the payload. An optimization-based motion planner is able to reason about the
orbital ephemeris to ensure the booms never exceed their actuation limits, and a Linear
Quadratic Gaussian controller is able to maintain fine-pointing during times of payload
operation.

The contents of this chapter have been previously published at IEEE Aerospace Con-
ference 2021 in Tracy, Manchester, and Douglas [177].

6.1 Introduction

Space telescopes have been able to explore the universe in ways that terrestrial telescopes
cannot through the atmosphere. Current monolithic systems like the Hubble Space Tele-
scope use onboard reaction wheels or Control Moment Gyroscopes (CMGs) to control
pointing [15]. These actuators spin weighted rotors onboard the spacecraft to store an-
gular momentum and maintain pointing in the presence of disturbance torques. Unfortu-
nately, the fractional mass of traditional attitude-control hardware grows dramatically as
the spacecraft gets smaller. For larger satellites, the actuators take up only a few percent
of the total spacecraft mass but, as the spacecraft gets smaller, it can consume 30% or
more of the total mass [43].
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Figure 6.1: Proposed architecture for a 6U CubeSat space telescope. Each boom has a
single degree-of-freedom in linearly independent axes, enabling three-axis attitude control.
Magnetorquers are used to desaturate the angular momentum of the booms and keep them
within their operating limits.

One issue with modern attitude control hardware on nanosatellites comes from the
vibrations present in reaction wheel and CMG operation. These actuators have to spin at
high angular velocities to store the required onboard angular momentum, and small defects
or imbalances in the rotors cause high-frequency jitter. These vibrations can resonate with
structural modes in the satellite and can corrupt payload pointing performance. To deal
with image-corrupting jitter, nanosatellite payloads employ second-stage corrections to
enable finer pointing performance for the payload than the body of the spacecraft. Common
methods for accomplishing this are fast-steering optical mirrors, image plane shifting with
lead zirconate titanate (PZT) actuators, and image stabilization [147, 138, 139, 6]. These
highly complex electromechanical systems are expensive and must be tailored to a specific
payload, increasing costs and payload size, weight, and power (SWaP).

In this paper, a novel actuation strategy for fine-pointing nanosatellites is explored
by abandoning high-frequency rotor-based actuators in favor of low-frequency deployable
booms, as shown in Figure 6.1. By taking advantage of the squared relationship between
boom length and the inertia of the boom, tip-mounted masses provide the control author-
ity required for attitude control without having to accelerate or decelerate the booms too
aggressively. A nanosatellite would deploy three booms about linearly independent axes
and rotate them slowly to reject the slowly varying disturbance torques. By better match-
ing the actuators’ speed to the frequency content of the disturbances, these booms are
able to eliminate jitter and enable high-accuracy body pointing of the nanosatellite. By
improving body pointing, payloads are no longer restricted to those that can accommodate
second-stage correction, and existing payloads can be simplified.

For nanosatellites in low-Earth orbit, disturbance torques come in the form of drag,
solar radiation pressure, magnetic, and gravity-gradient torques. All of these disturbances
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vary slowly throughout an orbit and can be predicted or estimated with high accuracy.
With knowledge of the incoming disturbance torques, the nanosatellite can formulate a
motion plan that accounts for disturbances and keeps the deployable booms from hitting
their hard stops by using the onboard magnetorquers to offload angular momentum through
interactions with the Earth’s magnetic field [56, 111]. Since nominal operations have the
nanosatellites inertially pointing during payload operations, linearized attitude dynamics
are sufficiently accurate for planning purposes. This allows for a convex formulation of
the motion-planning problem, guaranteeing a globally optimal solution in polynomial time
[24].

Our primary contributions in this paper include:

1. The introduction of a novel attitude-actuation strategy for fine-pointing nanosatel-
lites.

2. The application of convex optimization to motion planning for nanosatellites with
actuated booms.

3. An estimator and controller architecture for handling boom control during payload
operations.

In the remainder of this paper, we first provide details on the simulation environment
used for this research in Section 6.2. Next, the deployable-boom actuation strategy is
discussed in Section 6.3, and a convex motion planner is developed in Section 6.4 to reason
about the actuator’s constraints. A lower-level estimation and control architecture is then
detailed in Section 6.5. Finally, numerical experiments are presented in Section 6.6 to
validate the proposed ideas, and results are summarized in Section 6.7.

6.2 Spacecraft Dynamics Model

This section describes the model used to analyze and simulate the dynamics of a nanosatel-
lite space telescope in low-Earth orbit. Since the spacecraft has no propulsion onboard,
the orbital and attitude dynamics are decoupled and can be modeled separately. The
open-source Julia package SatelliteDynamics.jl is used for orbital simulation, taking into
account high order gravity, atmospheric drag, solar radiation pressure, and third-body ac-
celerations. For the attitude dynamics, a rigid-body simulation is used that includes the
disturbance torques present in low-Earth orbit.

We denote the Earth-Centered Inertial frame (ECI) as E, and the spacecraft body frame
as B. Relating these two frames is BQE, the rotation matrix that takes vectors expressed
in E and resolves them in frame B.

Gravity-Gradient Torque

Gravity varies inversely with the square of the distance from the central body. Because
of this, parts of the spacecraft that are farther away from the center of the central body
experience a smaller gravitational force than the parts that are closer. The resulting non-
uniform gravitational force acting on the spacecraft causes a torque. This torque can be

69



neatly expressed in terms of the spacecraft’s attitude, orbital position, and the inertia [111,
194]. First, the normalized position vector is computed in the body frame:

m̂ =
BQErE
∥rE∥

, (6.1)

then, the gravity-gradient torque can be calculated,

τgg =
3µ

∥r∥3 (m̂× Jm̂), (6.2)

where µ is the standard gravitational parameter for Earth. This calculation only takes
into consideration the spherical gravitational term, since the gravity gradient torque from
higher-order gravity terms is of negligible magnitude. For inertially pointing spacecraft in
pure Keplerian motion, the resulting gravity gradient torque is periodic with the orbit.

Atmospheric Drag Torque

To describe the atmospheric drag torque, the relative velocity of the spacecraft with respect
to the atmosphere is calculated with the following:

vrel =
BQE(veci − ωEarth × rE). (6.3)

A normalized version of this vector will be represented as v̂rel = vrel/∥vrel∥. The spacecraft
in this experiment has been parameterized as a box with 6 orthogonal faces. This geometry
is described with normal vectors n̂i for each face, position vectors from the center of mass
of the spacecraft to the center of pressure of each face ri, and the area of each face Si.
Only the faces in the direction of the relative velocity vector are affected, and the force
is proportional to the cosine of the angle between the normal face vector and the relative
velocity vector. This can also be represented as the dot product between two normalized
vectors:

wi = max(0, vT [EQB n̂i]). (6.4)

The force on each face is then calculated with the atmospheric density ρ and the coefficient
of drag Cd,

Faero,i = −
1

2
ρCd∥vrel∥vrelSiwi. (6.5)

The torque acting on the nanosatelite is then the sum of the moments caused by these
forces:

τaero =
6∑

i=1

ri × Faero,i. (6.6)
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Solar Radiation Pressure Torque

Similar to the aerodynamic drag torque, the radiation from the sun carries momentum,
and can impart a force on the spacecraft. First, the position vector from the spacecraft to
the sun is calculated as:

Brsun = Ersun − ErB, (6.7)

after which it is expressed in the body frame and normalized:

ŝ =
BQE Brsun

∥Brsun∥ . (6.8)

Based on the spectral and diffuse reflection coefficients, Rspec and Rdiff respectively, the
optical properties of the spacecraft material with respect to solar radiation pressure can
be calculated. The combined effects of reflection, diffusion, and absorption are captured
in our variable qi,

qi = 2
[1
3
Rdiff +Rspecŝ

T n̂i

]
n̂i + (1−Rspec)ŝ. (6.9)

The force caused by radiation pressure on each face is then,

Fsrp,i = −PsunSiqi ·max(0, ŝT [EQB ni]), (6.10)

and the final torque is the sum of the moments caused by the force on each face:

τsrp =
6∑

i=1

ri × Fsrp,i. (6.11)

Magnetic Torques

We use the International Geomagnetic Reference Field (IGRF) [164] to model the Earth’s
magnetic field. The IGRF models the scalar potential of the magnetic field with a spherical
harmonic expansion and calculates the magnetic field vector as the negative gradient of
this potential with respect to the position. This potential is described by a set of time-
varying coefficients that account for decades of empirical data and can predict the Earth’s
magnetic field up to 5 years in the future. This resulting magnetic field vector is a function
of position and time, and for spacecraft with no propulsion, can be computed online to
predict future magnetometer measurements. The spacecraft can then use the onboard
magnetorquers to interact with the Earth’s magnetic field in the following way:

τmag = m× bB, (6.12)

where bB is the magnetic field vector expressed in the spacecraft body frame, and m is
the spacecraft’s magnetic moment in the body frame. The total disturbance torque on the
nanosatellite is the sum of the aforementioned torques:

τ = τgg + τaero + τsrp + τmag. (6.13)
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Figure 6.2: The frequency content of disturbance torques on a small satellite in low-Earth
orbit. Disturbances are due to atmospheric drag, solar radiation pressure, and the gravity
gradient. The frequency content of the disturbances is of significantly lower frequency than
both standard reaction wheels and structural modes of the nanosatellites.

6.3 Actuation Strategy

To justify the introduction of a novel actuation strategy, the nature of the disturbance
torques was analyzed. A 1000-trial Monte-Carlo simulation of the orbital and attitude
dynamics was performed and disturbance torques were collected. The orbits in the simu-
lations were at an altitude of 550 km with inclinations between 0◦ and 90◦, eccentricities
between 0 and 0.00002, and epochs between 2014 and 2017. These dispersions served to
capture the full range of potential disturbance torques, as well as accurately sample the
time-varying atmospheric density. A discrete Fourier transform of the disturbance torque
data was taken, and the magnitudes of the terms in the Fourier series were used to plot its
power-spectral density in Figure 6.2.

Figure 6.2 displays a clear mismatch between the speed of the disturbances and the
speed of the actuators currently used in space telescopes. Jitter from traditional reaction
wheels and the structural modes of the spacecraft is 3-4 orders of magnitude faster than
the disturbance torques. This mismatch strongly suggests that slower actuators could be
used, and as a result, interactions between the actuators and structural modes could be
avoided.

The proposed architecture is displayed in Figure 6.1, with three masses mounted to
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Figure 6.3: Boom actuation with a direct-drive micro-stepper motor. Torques commanded
by the micro-stepper will accelerate and decelerate the boom, fully controlling the attitude
of the nanosatellite.

deployable booms that will be used for full three-axis attitude control. Each deployable
boom has a single-degree-of-freedom actuator at the interface between the boom and the
spacecraft that can rotate the boom and mass combination. By moving the booms, angular
momentum is transferred from the body of the spacecraft to the masses, allowing for full
actuation of the spacecraft’s attitude. This actuation strategy is significantly slower than
reaction wheels, and will therefore avoid both high-frequency jitter as well as the excitement
of the flexible modes of the spacecraft.

Two potential boom-actuator configurations are described in Figures 6.3 and 6.4, with
a stepper motor and a linear voice coil respectively. Both of these actuators are able
to precisely move the boom, but will also impart constraints on the torque, velocity, and
configurations of the boom. These constraints will be accounted for by the onboard motion
planner to ensure full attitude actuation is maintained. The boom actuators themselves can
also contribute unwanted dynamics, like cogging torques and stiction, into the dynamics
of the boom. Care must be taken when designing and building these actuators to ensure
that these contributions to the dynamics are well characterized and incorporated into the
planner.

6.4 Motion Planner

The spacecraft must maintain pointing through a balance of magnetorquer control and
boom control. A holistic planning approach is taken due to the following constraints:
The magnetorquers cannot be used during payload operations, and the deployable booms
must stay within their allowable ranges in position, velocity, and acceleration. Coarse
attitude control has been demonstrated using only magnetorquers [56], but this control
strategy is not precise enough for ultra-fine pointing and relies on a varying magnetic
field to demonstrate full three-axis actuation. The booms provide full three-degree-of-
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Figure 6.4: Boom actuation with a linear voice-coil actuator. By extending and contracting,
the linear force is converted to a torque near the base of the boom. This moment in turn
controls the angular acceleration of the boom.

freedom actuation of the attitude but must avoid violating their actuator constraints. These
conditions can be combined into a motion planner that balances magnetorquer use for
coarse pointing and momentum desaturation while utilizing the booms for precise pointing
during periods of payload operation. Similar to the existing nanosatellite telescopes DeMi
[6] and ASTERIA [92], this motion planner is tailored to the case where exposures are to
be taken during eclipse. This means that the nanosatellite must turn off the magnetorquers
for the duration of the ∼ 35-minute exposures.

The angular positions of the booms are described with θ ∈ R3, and the angular velocities
of the booms as θ̇ ∈ R3. The control input responsible for boom actuation is the angular
acceleration of the booms, denoted as α ∈ R3. The dynamics of the booms themselves are
modeled as double integrators with angular acceleration as a control input:

θ̈ = α. (6.14)

Assuming a zero-order hold on the commanded angular acceleration and discretizing, we
have, [

θk+1

θ̇k+1

]
= A

[
θk
θ̇k

]
+Bαk, (6.15)

where A and B are a function of the sample time, dt:

A =

[
I3 dt · I3
03 I3

]
, (6.16)

B =

[
1
2
dt2 · I3
dt · I3

]
. (6.17)

The planning problem is then posed as a convex optimization problem where the optimal
sequence of actuator commands, magnetic moment m and boom angular acceleration α,
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are solved for that counter all expected disturbance torques. To ensure that the magnetor-
quers are never on during payload operations, the optimization formulation conservatively
prohibits any magnetorquer usage during periods of eclipse, denoted as indexes k ∈ E . The
full optimization problem can be written as follows:

minimize
m,α, θ, θ̇

N∑
k=1

∥[mT
k , γα

T
k , βθ

T
k , σθ̇

T
k ]

T∥2

subject to τk =mk × bB − Jboomαk∀k,[
θk+1

θ̇k+1

]
=A

[
θk
θ̇k

]
+Bαk ∀k,

mmin ≤mk ≤ mmax ∀k,
αmin ≤αk ≤ αmax ∀k,
θmin ≤θk ≤ θmax ∀k,
θ̇min ≤θ̇k ≤ θ̇max ∀k,
mk =0 ∀k ∈ E ,

(6.18)

where the inertias of the deployable booms are the diagonal entries of Jboom, the magnetic
field of the Earth expressed in the spacecraft body frame is bB, and the disturbance torque
is τ . The torque matching constraint and the kinematics of the boom are both enforced
as linear equality constraints, and all the state and actuator limits are expressed as box
inequality constraints [152]. The cost function is a quadratic penalty on control usage for
the two sets of actuators, with γ, β, and σ as tuning parameters. Since the cost function
is quadratic and positive definite and the constraints are all linear, problem 6.18 can be
expressed as a convex Quadratic Program (QP). There are many readily available and
robust QP solvers available that are able to find the global optimum, as well as many
specialized solvers for use on embedded systems [115, 152, 13]. Using one of these tools,
a highly performant customized solver can be generated for this specific problem, and can
be implemented on compute-constrained flight hardware.

6.5 Estimation and Control

Fine-pointing nanosatellites demand the strictest pointing requirements during periods of
payload operation. The boom actuators are solely responsible for attitude control during
these periods since the magnetorquers are too coarse. The planner is able to leverage
predicted disturbance torques to put the booms in a configuration that allows for full con-
trollability during the exposure, but these predicted disturbance torques are not accurate
enough to feed forward to the controller during these sensitive payload operations. Instead,
during image captures, these disturbance torques will be estimated online in a recursive
filter, and the online estimate of the disturbance torque will be incorporated as a feedfor-
ward control input. This section details the state estimator and controller combination
that is used to maintain high-accuracy pointing during periods of image capture.
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Figure 6.5: Motion plan for a nanosatellite with control over both boom torques and
magnetorquers, given estimated future disturbance torques. During eclipse, when payload
operations take place, the nanosatellite is constrained to only use the boom torques due
to their precision.
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6.5.1 State Estimator

The disturbance torques on the nanosatellite are smooth and slowly varying, as shown in
Figure 6.6. A Multiplicative Extended Kalman Filter (MEKF) will be used for simultane-
ous estimation of the attitude, angular velocity, and disturbance torque [111]. Conventional
MEKF’s on large spacecraft omit the spacecraft’s angular velocity from the state due to the
accuracy of the onboard gyroscope. Nanosatellites do not have gyroscopes of this caliber
and must estimate the angular velocity online as a result. The filter state is denoted z,
and is augmented to include both the disturbance torque τ̂ , as well as its first derivative:

z =
[
qT ωT τ̂T ˙̂τT

]T
, (6.19)

where q ∈ R4 is the quaternion describing the rotation from E to the body frame B, ω ∈ R3

is the angular velocity of the nanosatellite, τ̂ ∈ R3 is the disturbance torque, and ˙̂τ ∈ R3 is
its time derivative. Estimating the disturbance torque derivative allows the filter to better
predict and anticipate changes in the disturbance torque. The deterministic dynamics
model for the MEKF is as follows:

ż =


1
2
q ⊗ (ω)

J−1(τ̂ − Jboomα− ω × Jω)
˙̂τ
0

 . (6.20)

These dynamics are discretized using an explicit integrator for a given sample time ∆t,
and additive white Gaussian (AWGN) process noise, νx, is added as follows:

zk+1 = f(zk, αk,∆t) + νx. (6.21)

In the measurement model, we assume full measurements of the attitude and angular
velocity,

y =

[
q
ω

]
+ νy, (6.22)

where νy is AWGN sensor noise. From here, the MEKF as described in [111] is implemented
with the addition of the angular velocity to the estimator state.

6.5.2 Feedback Controller

By linearizing the dynamics of the nanosatellite about a nominal desired attitude, and
replacing the quaternion with an axis-angle vector ϕ ∈ R3, the local error dynamics can
be expressed as the following:

ẋlqr =

[
ϕ̇
ω̇

]
=

[
0 I
0 0

] [
ϕ
ω

]
+

[
0

−Jboom

]
α. (6.23)
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Figure 6.6: Disturbance torques over a 45 minute period. These torques are smooth and
slowly varying, making estimation of this torque possible in a Kalman Filter.

From here, the dynamics can be discretized assuming a zero-order hold on α, and a feed-
back gain K is solved for that minimizes the following infinite-horizon Linear Quadratic
Regulator (LQR) cost function:

ℓ(x, u) =
1

2

∞∑
k=0

xTkQxk + αT
kRαk, (6.24)

where Q ∈ R6×6 and R ∈ R3×3 are positive definite diagonal matrices [153]. The resulting
control law takes the form,

u = −Kxlqr − J−1
boomτ̂, (6.25)

where τ̂ is the estimated disturbance torque from the MEKF.

6.6 Numerical Experiments

All experiments were run in Julia [18], using the optimization modeling language JuMP
[104] with Mosek [124] as the solver for the motion-planning problem. All of the code used
for the experiments is readily available at https://github.com/RoboticExplorationLab/
WiggleSat.jl.

To test the planning and control algorithms presented in this paper, a nanosatellite
in a low-Earth orbit with an altitude of 420 km, inclination of 51.4◦, and eccentricity of
0.00108 is considered. The orbit is propagated with accelerations from a high-order gravity
model, atmospheric drag, solar radiation pressure, and third body contributions from the
Moon and the Sun [123]. The disturbance torques as described in Section 6.2 are then
calculated given the desired attitude. The attitude measurement has a standard deviation
of 1 arcsecond [43], the gyroscope is modeled after the Honeywell GG1320AN with an angle
random walk of 0.0035 deg/

√
hr, and the sample rate on the sensors, filter, and controller

is 1 Hz [75].
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Figure 6.9: For each attitude sensing error, a series of simulations were run to estimate the
mean and 3-σ bounds for the RMS body pointing error. Despite all the simulations using
the same gyroscope, the estimator and controller combination is able to continue driving
down the body pointing error with the sensing error.

The motion planner, as detailed in Section 6.4, is used to calculate a nominal control
plan for both the magnetorquers and the booms. With a time horizon of 4 hours, the
planner is able to account for two eclipse periods where the magnetorquers are unavailable.
The solution from the planner is shown in Figure 6.5, with the nominal control plans for
both boom torques as well as commanded magnetic moment. The planner effectively
balances momentum management with the requirement to put the arms in a configuration
prior to eclipse that allows for full controllability throughout the duration of the eclipse.

During eclipse, the estimator and controller designed in Section 6.5 are used to maintain
the desired attitude. Instead of relying on the predicted disturbance torque, an MEKF is
used to estimate both the attitude and angular velocity, as well as the disturbance torque
and its time derivative. The convergence of this filter on the unknown disturbance torque
is shown in Figure 6.7. Even with a poor initialization of all zeros for the estimate of the
disturbance torque, the filter is able to converge on the true value within one minute of
operation.

The pointing performance of the combined estimator and controller is shown in Figure
6.8. Here, the initial condition starts outside the 1-arcsecond error circle, and the controller
is able to keep the error inside the circle for a Root Mean Square (RMS) body pointing error
of 0.39 arcseconds. To better evaluate the robustness and performance of this estimator
and controller combination, this same simulation was run for a variety of initial conditions
with a range of attitude sensing errors. The RMS body pointing error as a function of this
attitude sensing error is shown in Figure 6.9, where the mean body pointing performance
as well as three-sigma bounds are shown. We also note that the filter performs well enough
that body-pointing errors are able to decrease with attitude sensing error, despite using
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the same gyroscope for all simulations.

6.7 Conclusions

This paper proposes a novel attitude actuation strategy for fine-pointing nanosatellites.
The new approach abandons traditional high-frequency reaction wheels in favor of low-
frequency actuated booms. As shown by a spectral analysis of the environmental distur-
bance torques, these low-frequency deployable booms are a much better fit for the slowly
varying disturbance torques encountered in low-Earth orbit. By performing control in the
same frequency range as these disturbances, many of the complications that reaction wheels
introduce, including high-frequency jitter and excitement of flexible structural modes, can
be avoided. This actuation methodology results in finer body-pointing performance, re-
ducing the need for second-stage correction systems to point sensitive payloads.

Control of a spacecraft equipped with the proposed boom actuators was demonstrated
via a convex-optimization-based motion planner paired with an MEKF estimator and LQR
controller during sensitive payload operations. This planner was able to balance magne-
torquer usage and boom actuation to combat environmental disturbances, reason about
actuator limits and boom constraints, and avoid magnetorquer usage during periods of
eclipse for improved payload operations. This optimization problem was formulated as a
quadratic program and can be solved quickly and reliably onboard spacecraft with limited
computing resources.
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Chapter 7
Differentiable Collision Detection

Collision detection between objects is critical for simulation, control, and learning for
robotic systems. However, existing collision detection routines are inherently non-differentiable,
limiting their applications in gradient-based optimization tools. In this work, we propose
DCOL: a fast and fully differentiable collision-detection framework that reasons about col-
lisions between a set of composable and highly expressive convex primitive shapes. This is
achieved by formulating the collision detection problem as a convex optimization problem
that solves for the minimum uniform scaling applied to each primitive before they inter-
sect. The optimization problem is fully differentiable with respect to the configurations of
each primitive and is able to return a collision detection metric and contact points on each
object, agnostic of interpenetration. We demonstrate the capabilities of DCOL on a range
of robotics problems from trajectory optimization and contact physics, and have made an
open-source implementation available.

The contents of this chapter have been previously published at ICRA 2023 in Tracy,
Howell, and Manchester [170].

7.1 Introduction

Computing collisions is of great interest to the computer graphics, video game, and robotics
communities. Popular algorithms for collision detection include the Gilbert, Johnson, and
Keerthi (GJK) algorithm [60], its updated variant enhanced-GJK [31], and Minkowski Por-
tal Refinement (MPR) [151, 129]. For objects that have interpenetration, the Expanding
Polytope Algorithm (EPA) [180] is used to return a metric that describes the depth of
penetration between two objects. These algorithms are implemented in the widely used
Flexible Collision Library (FCL) [131], and are employed in most physics engines includ-
ing Bullet [37], Drake [163], Dart [96], and MuJoCo [166]. While efficient and robust, all
of these algorithms are inherently non-differentiable due to their logical control flow and
pivoting.

Two methods have been proposed for calculating approximate gradients of a collision
metric: The first is sample-based randomized smoothing of GJK for finite-differenced gra-
dients [122], and the second formulates the closest distance between spheres, capsules,

83



Figure 7.1: Collision detection between a cone and a polytope. DCOL works by solving an
optimization problem for the minimum scaling of each object that produces an intersection
which, in this example, is greater than one, meaning there is no collision. The scaled objects
are translucent and the intersection point between these scaled objects is shown in red.

planes, and boxes, as a differentiable optimization problem [201], similar to [171]. The
approximate gradients from the first method are expensive to compute and are unable to
return useful information if penetration occurs, while the second method is only able to
handle a limited selection of convex primitives.

This paper introduces DCOL, a differentiable collision-detection framework that com-
putes closest points, minimum distance, and interpenetration depth between any pair of
six convex primitive shapes: polytopes, capsules, cylinders, cones, ellipsoids, and padded
polygons (Fig. 7.2). We do this by formulating a convex optimization problem that solves
for the minimum uniform scaling that must be applied to the primitives for an intersection
to occur, an idea first proposed for polytopes in [59]. When primitives are not in contact,
the minimum scaling for an intersection is greater than one, and when there is interpen-
etration between objects, the minimum scaling is less than one. The ability to return an
informative collision metric in the presence of interpenetration is a key distinction between
DCOL and GJK variants. In addition to the scaling parameter detecting a collision, the
contact points on each object can be calculated from this solution as well.

The optimization problems produced by our formulation are bounded, feasible, and
well-defined for all configurations of the primitives. Differentiable convex optimization
allows the sensitivities of the solution to be calculated with respect to problem parameters
with minimal added computation. This allows informative and smooth derivatives of the
minimum scaling as well as the contact points with respect to the configurations of the
primitives to be computed efficiently.

The ability to differentiate through our collision detection algorithm enables the in-
clusion of accurate collision information into gradient-based robotic simulation, control,
and learning frameworks. We demonstrate this on several relevant robotics problems from
trajectory optimization and contact physics.

Our specific contributions in this paper are the following:
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• An optimization-based collision detection formulation between convex primitives that
returns an informative collision metric even in the case of interpenetration

• Efficient differentiation of this optimization problem with respect to the configura-
tions of each primitive

• A fast and efficient open-source implementation of these algorithms built on a custom
primal-dual interior-point solver

The paper proceeds by providing background on standard convex conic optimization
and differentiation of conic optimization problems in Section 7.2, a derivation of DCOL in
Section 7.3 with the corresponding constraints for each of the six convex primitives shown
in Fig. 7.2, example use cases in trajectory optimization and contact physics in Section
7.4, and our conclusions in Section 7.5.

7.2 Background

The differentiable collision detection algorithm, DCOL, proposed in this paper is built on
differentiable convex optimization. In this section, convex optimization with the relevant
conic constraints is detailed, as well as a method for efficiently computing derivatives of
these optimization problems with respect to problem parameters.

7.2.1 Conic Optimization

DCOL formulates collision detection problems as a convex optimization problem with conic
constraints [24]. In standard form, these optimization problems have linear objectives and
constraints of the following form:

minimize
x

cTx

subject to h−Gx ∈ K,
(7.1)

where x ∈ Rn, c ∈ Rn, G ∈ Rm×n, h ∈ Rm, and K = K1×· · ·×KN is a Cartesian product
of N proper convex cones. The optimality conditions for problem 7.1 are as follows:

c+GT z = 0, (7.2)

h−Gx ∈ K, (7.3)

z ∈ K∗, (7.4)

(h−Gx) ◦ z = 0, (7.5)

where a dual variable z ∈ Rm is introduced, K∗ is the dual cone, and ◦ is a cone product
specific to each cone [183].

The cones required for DCOL include the nonnegative orthant, denoted as Rm
+ , and

the second-order cone, denoted as Qm. The nonnegative orthant contains any vector
s ∈ Rm

+ where s ≥ 0, and the a second-order cone contains any vector s ∈ Qm such that
∥s2:m∥2 ≤ s1.

85



We develop a custom primal-dual interior-point solver for DCOL, with support for
both of the relevant cones, based on the conelp solver from [183], with features taken from
[41, 127, 9, 126]. The memory for this custom solver is entirely stack-allocated and is
optimized for the small problems that DCOL creates, dramatically outperforming off-the-
shelf primal-dual interior-point conic solvers like ECOS [41] and Mosek [124].

7.2.2 Differentiating Through a Cone Program

Recent advances in differentiable convex optimization have enabled efficient differentiation
through problems of the form (7.1) [5, 4, 8]. Solutions to (7.1) can be differentiated with
respect to any parameters used in c, G, and h.

At the core of differentiable convex optimization is the implicit function theorem. An
implicit function g : Ra ×Rb → Ra is defined as:

g(y∗, θ) = 0, (7.6)

for an equilibrium point y∗ ∈ Ra, and problem parameters θ ∈ Rb. Approximating (7.6)
with a first-order Taylor series results in:

∂g

∂y
δy +

∂g

∂θ
δθ = 0, (7.7)

which can be re-arranged to solve for the sensitivities of the solution with respect to the
problem parameters:

∂y

∂θ
= −

(
∂g

∂y

)−1
∂g

∂θ
. (7.8)

By treating the optimality conditions in equations (7.2) and (7.5) as an implicit function
at a primal-dual solution, the sensitivities of the solution with respect to the problem data
can be computed. When the original optimization problem is solved using a primal-dual
interior-point method as described in [183], these derivatives can be computed after the
solve without any additional matrix factorizations [8]. This enables fast differentiation of
conic programs that are fit for use in our differentiable collision detection algorithm.

In the case where only the gradient of the objective value J with respect to the problem
parameters θ is needed, the implicit function theorem is unnecessary. Instead, we need only
the gradient of the Lagrangian for (7.1):

L(x, z, θ) = c(θ)Tx+ zT (G(θ)x− h(θ)), (7.9)

where the problem matrices c, h, and G, are functions of the problem parameters θ. Given
a primal-dual solution (x∗, z∗), the gradient of the objective value with respect to the
problem parameters is simply the gradient of the Lagrangian with respect to these problem
parameters, ∇θJ = ∇θL(x∗, z∗, θ). This allows for a faster computation of this specific
gradient without using the implicit function theorem.
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: Geometric descriptions of the six primitive shapes that are compatible with this
differentiable collision detection algorithm. These shapes include a polytope (a), capsule
(b), cylinder (c), cone (d), ellipsoid (e), and padded polygon (f). Collision information
including the collision status as well as the contact points can be computed between any
of two of these primitives using DCOL.

7.3 The DCOL Algorithm

This section details how DCOL computes collision information between two convex primi-
tives. The core part of this framework is an optimization problem that solves for a minimum
uniform scaling α ∈ R applied to both objects that result in an intersection. In the case
where there is no collision between the two objects, the minimum scaling is greater than
one, and when there is interpenetration, the minimum scaling is less than one. Because of
this, we find the minimum scaling α is a better collision metric than the closest distance
between the primitives, allowing for the straightforward description of collision constraints
that are agnostic of interpenetration. All steps in the creation and solving of this opti-
mization problem are fully differentiable, and average timing results for computing both
solutions and derivatives are provided in Table 7.1 as an average over each primitive.
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Table 7.1: Average DCOL Computation Times

polyt. caps. cyl. cone ellips. polyg.

evaluate 5.9 µs 8.5 µs 8.4 µs 5.0 µs 6.8 µs 9.4 µs
differentiate 1.4 µs 1.4 µs 1.6 µs 1.3 µs 1.3 µs 1.7 µs

7.3.1 Optimization Problem

Scaled convex primitives are described as a set S(α), which is a specific instance of the
primitive scaled by some α. A point x ∈ R3 is said to be in the set x ∈ S(α) if x is within
the scaled primitive. This notation allows for the following formulation of the optimization
problem:

minimize
x, α

α

subject to x ∈ S1(α),
x ∈ S2(α),
α ≥ 0,

(7.10)

where the minimum scaling α is computed such that x is in the interior of both of the
scaled primitives, making x an intersection point. This optimization problem is convex,
bounded, and feasible for all of the primitives described in this paper. The boundedness
comes from the constraint α ≥ 0, and the guarantee of feasibility comes from the fact that
each object is uniformly scaled, so that in the limit α → ∞ each shape will encompass
the entirety of R3, guaranteeing an intersection between objects. Another benefit to this
problem formulation is that the only time the minimum scaling α = 0 is when the origins
of the two objects are coincident, in which the problem and its derivatives are still well
defined.

7.3.2 Primitives

This section details the constraints that define set membership for each of the six scaled
primitives. Each object is defined with an attached body reference frame B with an origin
r ∈ R3 expressed in a world frame W. The uniform scaling of these objects is always
centered about this position r, and when the scaling parameter α is 0, the object is simply
a point centered at r. The orientation of an object is defined by a rotation matrix WQB ∈
R3×3 relating the world frame to the object-fixed body frame, denoted as Q for shorthand.
For each primitive, the constraints are also explicitly written in standard conic form for
direct inclusion in our custom conic solver in the form of (7.1), where h−Gx ∈ K.

Polytope

A polytope is a convex shape in R3 defined by a set of halfspace constraints, an example
of which is shown in Fig. 7.2a. This polytope is described as the set of points w ∈ R3 such
that Aw ≤ b for w expressed in B, where A ∈ Rm×3 and b ∈ Rm represent the m halfspace
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constraints comprising the polytope. This polytope can be scaled by α, resulting in the
following constraint for x to be inside the polytope:

AQT (x− r) ≤ αb. (7.11)

The scaling parameter α scales the vector b, resulting in uniform scaling of all halfspace
constraints and subsequent uniform scaling of the polytope. This constraint in standard
form is the following:

AQT r −
[
AQT −b

] [x
α

]
∈ R+. (7.12)

Capsule

A capsule can be defined by the set of points within some radius R of a line segment, as
shown in Fig. 7.2b. This internal line segment is along the x axis of the attached reference
frame B, and the end points of this line segment are some distance L apart. The scaled
constraints for this primitive are that the point x must be within a scaled radius of the
line segment, where the distance of the endpoints of the line segment from r is also scaled:

∥x− (r + γb̂x)∥2 ≤ αR, (7.13)

−αL
2
≤ γ ≤ α

L

2
, (7.14)

where b̂x = Q[1, 0, 0]T , and γ ∈ R is a slack variable. These constraints contain a linear
inequality and one second-order cone constraint, shown here in standard form:

[
0
0

]
−
[
01×3 −L/2 1
01×3 −L/2 −1

]xα
γ

 ∈ R2
+, (7.15)

[
0
−r

]
−
[
01×3 −R 0

−I3 03×1 b̂x

]xα
γ

 ∈ Q4. (7.16)

Cylinder

The description of a cylinder is shown in Fig. 7.2c, with an orientation, a radius R, and a
length L. The constraints for this primitive are the same as for the capsule in equations
(7.13) and (7.14), with the introduction of two new scaled halfspace constraints that give
the cylinder its flat ends:

[x− (r − αL
2
b̂x)]

T b̂x ≥ 0, (7.17)

[x− (r + α
L

2
b̂x)]

T b̂x ≤ 0. (7.18)
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These constraints in standard form include those shown in equations (7.15) and (7.16) with
the following addition:

[
−b̂Tx r
b̂Tx r

]
−
[
−b̂Tx −L/2 0

b̂Tx −L/2 0

]xα
γ

 ∈ R2
+. (7.19)

Cone

As shown in Fig. 7.2d, a cone can be described with a height H, and a half angle β. The
origin of the object-fixed frame r is one-quarter of the way from the flat face to the point
of the cone, and α scales the distance of these two ends from the center point r:

∥x̃2:3∥2 ≤ tan(β)x̃1, (7.20)

(x− r − αH
4
b̂x)

T b̂x ≤ 0, (7.21)

where x̃ = QT (x− r + α 3H
4
b̂x). These constraints in standard form are:

b̂Tx r −
[
b̂Tx −H/4

] [x
α

]
∈ Rm

+ , (7.22)

−EQT r −
[
−EQT v

] [x
α

]
∈ Q3, (7.23)

where E = diag(tan β, 1, 1) and v = (−3H
4
tan β, 0, 0).

Ellipsoid

An ellipsoid, shown in Fig. 7.2e, can be described by a quadratic inequality xTPx ≤ 1,
where P ∈ Sn

++ is strictly positive definite and has an upper-triangular Cholesky factor
U ∈ Rn×n [24]. From here, a scaled ellipsoid with arbitrary position and orientation can
be expressed in the following way:

∥UQT (x− r)∥2 ≤ α, (7.24)

where a sphere of radius R is just a special case of an ellipsoid with P = I/R2. These
constraints can be written in standard form as:[

0
−UQT r

]
−
[

01×3 −1
−UQT 03×1

] [
x
α

]
∈ Q4. (7.25)

Padded Polygon

A “padded” polygon is defined as the set of points within some radius R of a two-
dimensional polygon. Shown in Fig. 7.2f, the first two basis vectors of B span the polygon,
and the polygon itself is defined with a slack variable y ∈ R2, and Cy ≤ αd, where
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C ∈ Rm×2, and d ∈ Rm, describe the m halfspace constraints for the polygon. This poly-
gon is scaled in the same fashion as the polytope, and results in the following constraints:

∥x− (r + Q̃y)∥2 ≤ αR, (7.26)

Cy ≤ αd, (7.27)

where Q̃ ∈ R3×2 is the first two columns of Q. These constraints can be represented in
standard form as the following:

0m −
[
0m×3 −d C

] xα
y

 ∈ Rm
+ , (7.28)

[
0
−r

]
−
[
01×3 −R 01×2

−I3 03×1 Q̃

] [
x
α

]
∈ Q4. (7.29)

7.3.3 Contact Points and Minimum Distance

While the computation of contact points and minimum distance between primitives is not
needed for any of the examples in Section 7.4, they are easy to compute with DCOL if
desired. The intersection point on the two scaled primitives is referred to as x∗, but unless
α∗ = 1, this point does not exist on the surface of the primitives. The corresponding
contact point for primitive i, pi ∈ R3, is calculated using the optimal x∗ and α∗ from
(7.10) as

pi = ri +
x∗ − ri
α∗ , (7.30)

where the intersection point between the scaled primitives is simply scaled back to each
unscaled primitive. The distance between these points can also be calculated as follows:

∥d∥2 = ∥p1 − p2∥2 = ∥r1 − r2 +
r2 − r1
α
∥2. (7.31)

Both of these operations are fully differentiable given the derivatives from DCOL, allowing
for the calculation of the sensitivities of the contact points with respect to the configurations
of the primitives.

7.4 Examples

In this section, we demonstrate the utility of differentiable collision detection in trajectory
optimization problems where contact is to be avoided, and in physics simulation with
contact where exact and differentiable collision information is required. In both of these
applications, a collision constraint α ≥ 1 is used to enforce no interpenetration between
each pair of primitives, where α is the minimum scaling from DCOL.
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Figure 7.3: Trajectory optimization for a 6-DOF quadrotor as it moves from left to right
through a cluttered hallway. The collision constraints were represented with DCOL, and
the trajectory optimizer was initialized with a static hover at the initial condition.

7.4.1 Trajectory Optimization

Trajectory optimization is a powerful tool in motion planning and control, where a numeri-
cal optimization problem is formulated to solve for a constrained trajectory that minimizes
a cost function. A generic trajectory optimization problem with collision avoidance con-
straints from DCOL is as follows:

minimize
x1:N ,u1:N−1

ℓN(xN) +
∑N−1

k=1 ℓk(xk, uk)

subject to xk+1 = fk(xk, uk),
hk(xk, uk) ≤ 0,
gk(xk, uk) = 0,
αk(xk) ≥ 1,

(7.32)

where k is the time step, xk and uk are the state and control inputs, ℓk and ℓN are the stage
and terminal costs, f(xk, uk) is the discrete dynamics function, hk(xk, uk) and gk(xk, uk)
are inequality and equality constraints, and αk(xk) are the collision avoidance constraints
from DCOL. Problems of this form can be solved with general purpose nonlinear program
solvers like SNOPT [61], and Ipopt [187], or more specialized solvers like ALTRO [77, 81].

A key requirement for any gradient-based solver used to solve (7.32) is the ability to
differentiate all of the cost and constraint functions with respect to the state and control
inputs. This requirement has made collision-avoidance constraints difficult to incorporate
into trajectory optimization frameworks because traditional collision detection methods
are non-differentiable. In this section, DCOL is used to formulate collision-avoidance con-
straints in trajectory optimization problems to solve for collision-free trajectories.

“Piano Mover” Problem

The first problem we will look at is a variant of the “Piano Mover” problem, where a
piano must maneuver around a 90-degree turn in a hallway [196, 146]. The walls are 1
meter apart, and the “piano” (a line segment) is 2.6 meters long, making the path around
the corner nontrivial. This problem is solved with trajectory optimization and collision
constraints, where the piano is parameterized as a cylindrical rigid body in two dimensions,
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Figure 7.4: The “Piano Movers” problem, where a “piano” (red rectangle) has to make
a turn down a hallway, is solved with trajectory optimization. The piano and the walls
are modeled as rectangular prisms. DCOL was used to represent all of the collision avoid-
ance constraints that ensure the piano cannot travel through the wall, and the trajectory
optimizer was able to converge on a feasible trajectory to deliver the piano to the goal
state.

with a position and orientation, and the hallway is modeled with polytopes. The solution
to this problem is shown in Fig. 7.4, where the piano successfully maneuvers around the
tight corner and reaches the goal state without traveling through any of the walls. The
trajectory optimizer was initialized with the piano in a static pose at the initial condition.
[196] [146]

Quadrotor

Motion planning for quadrotors has received significant attention in recent years [117,
118, 157], with collision avoidance featured in many of these works [49, 137, 148]. With
DCOL, we are able to directly and exactly incorporate collision avoidance constraints into
a quadrotor motion planner to solve for trajectories through cluttered environments. In
this example, we use trajectory optimization for a classic 6-DOF quadrotor model from
[117, 80] to solve for a trajectory that traverses a cluttered hallway with 12 objects in it,
shown in Fig. 7.3. The solver was initialized with the quadrotor hovering at the initial
condition, and a spherical outer approximation of the quadrotor geometry was used to
compute collisions. Despite this naive guess, the solver was able to quickly converge on a
collision-free trajectory through the obstacles.

Cone Through an Opening

This example demonstrates how trajectory optimization with DCOL can route a cone
through a square hole in a wall, as shown in Fig. 7.5. The dynamics of the cone are
modeled as a rigid body with full translational and rotational control, and the wall is
comprised of four rectangular prisms, making a rectangular opening in the wall. The
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(a)

(b)

Figure 7.5: Trajectory optimization for a cone (orange) with translation and attitude
control as it travels through a square opening in a wall. Top-down and side views are
shown in (a) and (b), respectively. The cone is forced to slew to an attitude that allows for
the passing of the cone through the opening before returning to the initial attitude. The
trajectory optimizer was simply initialized with the static initial condition.

trajectory optimizer converged on a solution where the cone successfully passes through the
opening in the wall, requiring that the cone slewed its orientation and “squeezed through”
the opening. This example demonstrates the importance of the differentiability of the
collision avoidance constraints, as the optimizer was forced to leverage both translational
and rotational manipulation of the cone in order to successfully pass through the opening.
As with the previous two examples, there was no expert initial guess provided to the
trajectory optimizer, just a static initial condition.

7.4.2 Contact Physics

Another application of differentiable collision detection in robotics is contact physics for
simulation. Rigid-body mechanics with inelastic collisions can be simulated using complementarity-
based time-stepping schemes [78], where stationary points of a discretized action integral
are solved for subject to contact constraints [112]. Normally these constraints are limited
to traditionally differentiable ones like those between fixed contact points and a floor. The
differentiability of DCOL enables these same methods to be extended for simulating con-
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Figure 7.6: Contact physics with differentiable collision constraints embedded in a
complementarity-based time-stepping scheme, simulated at 100 Hz. Twelve convex ob-
jects are started at random positions with velocities pointing towards the origin at t = 0.
The objects impact each other at t = 2 and spread out again by t = 3.5. Despite the com-
plexity of the simulation, the collision constraints can be enforced to machine precision
and the integration is stable.

tact between convex primitives, as shown in Fig. (7.6) where twelve primitives collide.
In terms of computation times, using DCOL for contact physics is reasonable given each
constraint evaluation and differentiation are usually less than 10 µs as shown in Table 7.1.

7.5 Conclusion

We have presented DCOL, a fast differentiable collision detection algorithm capable of
computing useful collision information and derivatives for pairs of any of six convex prim-
itives. By formulating the collision-detection problem as an optimization problem that
solves for the minimum uniform scaling that must be applied to each primitive before an
intersection occurs, a surrogate proximity value is returned that is informative for primi-
tives with or without a collision. Using differentiable convex optimization and a primal-
dual interior-point conic solver, smooth derivatives of this optimization problem are re-
turned after convergence with very little additional computation. The utility of DCOL
is demonstrated in a wide variety of robotics applications, including motion planning and
contact physics, where collision derivatives are required. Future work includes methods
for convex decompositions of complex shapes as well as the incorporation of DCOL into
existing physics engines. Our open-source Julia implementation of DCOL is available at
https://github.com/kevin-tracy/DifferentiableCollisions.jl.
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Chapter 8
Differentiable Continuous Collision Detection

Typical discrete collision detection can only consider robots and environments in their
static configurations at discrete time steps. For sequences in which either the robot or the
environment moves, discrete collision detection is unable to reason about collisions that
occur between time steps. This can result in accidental collisions, as well as “tunneling,”
where two objects pass directly through one another. By contrast, continuous collision
detection directly models and evaluates motion between two adjacent time steps. These
continuous methods are often computationally expensive and nondifferentiable, restricting
them to simple primitives for practical use in robotics. In this work, we present a method for
performing continuous collision detection on arbitrary convex sets that reduces to a small
convex optimization problem. The proposed formulation is indifferent to penetration, has
no degenerate cases, and is fully differentiable and highly parallelizable. Videos, code, and
more examples are available at https://continuous-collisions.github.io/.

8.1 Introduction

Given two objects in fixed configurations, Discrete Collision Detection (DCD) is used to
determine if and where a collision exists. Modern robotic motion planning tools rely on
collision detection between convex objects to synthesize collision-free trajectories. When
DCD is used to identify collisions in a trajectory, it runs the risk of missing unintentional
collisions between the discrete time steps. These collisions come from an effect called “tun-
neling,” where an object speeds through an obstacle without violating collision avoidance
constraints. This happens when collision checking is performed just before and after the
object passes through the obstacle. In early video game engines, this would often result in
players speeding through walls or getting stuck underneath floors [48].

To ensure that DCD is adequate for collision avoidance planning, a myriad of algo-
rithmic enhancements have been proposed to combat these shortcomings. First, the time
between discrete collision checks can be decreased, resulting in finer-grained collision check-
ing at the expense of compute and problem complexity. Another common strategy is to
add a collision margin that is conservative enough to combat any tunneling by making ob-
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Figure 8.1: Example trajectory optimization solutions for a polytope passing near a wall
where collision avoidance constraints are specified with discrete collision detection (red)
and the proposed continuous collision detection (green). In the discrete case, the solver
only has to satisfy the collision avoidance constraints at each of the discrete knot points,
allowing the polytope to “speed” through the wall while appearing collision-free to the
solver. Using the proposed continuous collision detection, the solver is able to directly
reason about collision that happen at and between the time steps to ensure that no collision
exists.

stacles appear thicker than they are. In cuRobo [158], this collision margin is augmented
with a penalty that effectively increases the margin when the robot is moving faster, thus
discouraging any “speeding through” obstacles. In TrajOpt [145], collisions between pairs
of convex objects at adjacent time steps are avoided by forming a convex hull for each
object and checking these convex hulls for any intersections. This approach successfully
captures continuous collisions but is a potentially limiting over approximation of the colli-
sion environment since the objects are not actually encompassing the convex hulls for the
duration of the time step.

Based on the complexity of the primitive, there are many available methods for DCD
that each carry their own tradeoffs. For simple sphere-capsule-box interactions, analytical
collision information can be solved for in closed form [48]. For generic convex shapes,
iterative methods such as Gilbert-Johnson-Keerthi (GJK) [60, 31] and Minkowski Portal
Refinement (MPR) [151, 129] are used. Both GJK and MPR only return useful collision
information when objects are not in contact; as soon as penetration occurs, the Expanding
Polytope Algorithm (EPA) [180] must be used to determine a penetration depth. Highly
mature implementations of these algorithms are available in the Flexible Collision Library
(FCL) [131], which many modern physics simulators rely on [37, 163, 96, 166]. While these
DCD algorithms are fast and reliable, they involve significant logic and branching, making
them inherently nondifferentiable and challenging to put on a GPU.

While DCD examines pairs of objects in static configurations, Continuous Collision
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Detection (CCD) reasons about objects as they move between sequential configurations.
CCD computes the same information that DCD does, but in addition, also calculates the
time of impact, indicating when a collision takes place between two configurations. This
new information comes at an expense, as CCD is significantly more difficult and limited in
the primitives it can handle compared to DCD. For simple sphere-capsule-box primitives, a
mix of analytical and iterative methods are available for computing the time of impact [48].
In [181], a GJK-based ray-casting method was proposed to compute the continuous collision
information between a moving convex object and a static configuration-space obstacle. A
method for direct handling of moving nonconvex meshes was introduced in [198], and
was updated to include angular motion in [38]. While these existing CCD methods are
readily available, they suffer from the same branching and nondifferentiability issues as
DCD methods.

This work focuses on convex-convex CCD as it relates to gradient-based motion plan-
ning, where cost and constraint functions are required to be differentiable. There has been
growing interest in differentiable DCD with sampling-based methods [122], and differen-
tiable optimization-based methods [170, 201, 171]. The work proposed in this paper serves
more closely as a continuous follow-on to the differentiable DCD solution introduced in
[170], where a framework for computing smooth gradients through collision detection was
enabled by scale-based collision detection and differentiable convex optimization.

We introduce a true CCD routine for pairs of arbitrary convex sets that is fully dif-
ferentiable with respect to each configuration. By solving for collision information with a
geometric scale factor, the collision check reduces to a small convex optimization problem
that is guaranteed to be globally solvable, bounded, and feasible for any configuration
of the objects. The solution of this optimization problem is then used to form smooth
gradients of the collision information with respect to any problem parameters with very
limited computational expense (significantly less than solving the problem). Together, this
enables gradient-based motion planners to solve for collision-free trajectories with a coarse
and efficient discretization of the trajectories.

Our specific contributions in this paper are the following:

• An optimization-based continuous collision-detection method between pairs of mov-
ing convex sets without any branching or degenerate cases

• A fast and efficient method for differentiating the method in automatic-differentiation
frameworks

• A convex interior-point algorithm for solving the collision problem that can be ar-
bitrarily parallelized on a GPUs or TPUs for problems with varying numbers of
constraints

This paper proceeds by providing background information in Section 8.2, introducing
our CCD algorithm in Section 8.3, detailing a parallelizable convex solver in Section 8.4,
examples of these methods used for collision avoidance motion planning in Section 8.5, and
our concluding remarks in Section 8.6.
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8.2 Background

The continuous collision-detection algorithm introduced in this paper involves forming,
solving, and differentiating a convex optimization problem. In this section, the necessary
background to understand this formulation is presented.

8.2.1 Perspective Operators

In order to simplify the notation around scale-based collision detection, the idea of a
perspective operator for a convex set is introduced. For collision purposes, each rigid body
in a robot is decomposed into a collection of convex sets [145]. Given a closed convex set
X ⊆ RN , a perspective operator is used to map this n-dimensional set to a cone in n + 1
dimensions [109, 108, 143, 70]. The new dimension comes from a scale factor α ∈ R+ that
geometrically scales up the set when α > 1 and scales down the set when α ≤ 1 until it is
just a point at α = 0.

For practical purposes, the simplest way to exploit the perspective operator is to define
the original convex set in standard conic form, X = {x : Ax + b ∈ K}, where x ∈ R3 is a
point in some world frame W, and K is a proper convex cone [24, 100]. Common convex
sets such as polytopes, cylinders, cones, capsules, and ellipsoids, can easily be represented
in this form [170]. From here, the perspective operator defines a new scaled convex set X̄
as the following:

X̄ = {(x, α) : α ≥ 0, Ax+ αb ∈ K}. (8.1)

For example, for a polytope described by Bx+ c ≥ 0 (where the cone K is the nonnegative
orthant R+), the scaled polytope becomes Bx+ αc ≥ 0.

It is often most convenient to express a convex set with an attached body frame B,
with an origin B0. Instead of redefining the convex set every time it moves in the world
frame, we can instead simply define it once in its own body frame and parameterize any
SE(3) rigid transformation with translation r = WrB0

B ∈ R3 and rotation Q = WQB ∈ R3×3.
This allows us to write a general constraint for a convex set given a specific position and
attitude as:

AQT (x− r) + αb ∈ K. (8.2)

This method for defining scaled convex sets in a world frame enables a straightforward
extension to optimization-based collision detection built on this scaling.

8.2.2 Scale-Based Collision Detection

Traditionally, collision detection between two convex sets is done by searching for the closest
point between these two sets. If the closest points are not coincident, the objects are not
in collision. This is the backing for the popular collision detection algorithms GJK [60,
31] and MPR [151, 129], enabling fast and efficient collision detection between common
convex primitives. The two main drawbacks of this approach come from nondifferentiability
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initial configuration scaled to collision

with
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without

collision

Figure 8.2: Scale-based collision detection for objects that are in and out of collision. In
the upper row, the two objects are not in collision, so the minimum scaling that results
in an intersection is able to “grow” the objects to α∗ = 1.3. In the bottom row, the two
objects are already in collision, so the minimum uniform scaling shrinks the objects down
to α∗ = 0.8.

of these algorithms and the degenerate case when the two sets are in collision. In the latter
case, GJK and MPR cannot return useful information and instead must default to an
alternative algorithm such as EPA to establish a “penetration depth.”

As shown in [170], scale-based collision detection avoids both of these shortcomings
by solving a different optimization problem. Instead of searching for the closest points
between two fixed sets, the perspective operator is used to scale the two sets by a common
α and solve for the minimum shared scaling that results in an intersection.

With a point in the world frame x ∈ R3 and two convex sets defined with (8.2) as
AiQ

T
i (x− ri) + αbi ∈ K, the optimization problem that finds the minimum scaling α that

results in an intersection between two scaled convex sets is:

minimize
x, α

α

subject to AiQ
T
i (x− ri) + αbi ∈ Ki i = 1, 2,

α ≥ 0.

(8.3)

This is a convex optimization problem that is guaranteed to be both feasible and bounded.
In the event that the two convex sets are in collision, the sets are scaled down to α < 1
to the smallest possible scale factor that has an intersection. If the two sets are not in
collision, they are scaled up to α > 1 until an intersection is reached. In both cases,
the fundamental algorithm remains unchanged, as the optimization formulation in (8.3)
handles both cases. Furthermore, there are no degenerate cases based on the geometry or
configurations of the sets, since there always exists a minimum scaling for an intersection,
even when the intersection is another set (a line or a plane).

8.2.3 Differentiable Optimization

Collision detection as a solution to an optimization problem in (8.3) makes taking deriva-
tives with automatic differentiation tools challenging. Both forward and reverse-mode au-
tomatic differentiation are unable to accurately compute derivatives through an iterative
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numerical solver [7]. To avoid this, differentiable optimization tools are used to compute
these derivatives in a fast and accurate way without propagating derivatives through iter-
ative schemes.

Given a generic optimization problem in the following form:

minimize
y

fθ(y)

subject to cθ(y) ∈ K,
(8.4)

with the cost and constraints as functions of some problem parameters θ, a dual variable
λ ∈ Rm is used to enforce the constraint in the following Lagrangian:

Lθ(y, λ) = fθ(y) + λT cθ(y). (8.5)

Using this, the KKT conditions necessary for optimality are,

∇yfθ(y) +

[
∂c

∂y

]T
λ = 0 (8.6)

cθ(y) ∈ K (8.7)

λ ∈ K∗ (8.8)

cθ(y) ◦ λ = 0, (8.9)

where K is a proper cone and K∗ and ◦ are the corresponding dual cone and cone product,
respectively [183]. Any primal-dual values (y, λ) that satisfy equations (8.6)-(8.9) are a
locally optimal solution to 8.4.

By viewing equations (8.6) and (8.9) as the following implicit function of w = (y, λ),

gθ(w) =

[
∇yfθ(y) +

[
∂c
∂y

]T
λ

cθ(y) ◦ λ

]
, (8.10)

an approximate primal-dual solution w∗ = (y∗, λ∗) is an equilibrium point where gθ(w
∗) ≈

0. At this equilibrium, the implicit function theorem can be used to calculate the Jacobian
of the primal-dual solution with respect to the to the problem parameters [78]:

∂y

∂θ
= −

(
∂g

∂y

)−1
∂g

∂θ
. (8.11)

Practically, this works by solving the problem with a standard numerical solver, after
which the approximate solution is used with the implicit function theorem to provide the
necessary derivatives.

Alternatively, if the only derivative we need is that of the optimal objective value
f(x∗) with respect to the problem parameters, an even simpler approach can be used:
At a primal-dual solution, the gradient of the objective value with respect to the problem
parameters is simply the gradient of the Lagrangian with respect to these same parameters
[33],

∇θfθ(y
∗) = ∇θLθ(y

∗, λ∗), (8.12)
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Figure 8.3: Graphical description of how the τ ∈ [0, 1] parameter linearly interpolates the

origin of the objects from their initial positions at r
(−)
i at τ = 0, to r

(+)
i at τ = 1. Discrete

collision detection can only check objects for collisions at τ = 0 and τ = 1, while the
proposed continuous collision detection method can determine whether there is a collision
as each object moves between the two positions. It is important to note that this sweeping
motion is not simply checking if two convex hulls are in collision, but rather checks for
contact as both objects move simultaneously on the path.

allowing us to calculate the derivative we need without forming or solving a linear system.

These differentiable optimization methods are used to convert the always-feasible con-
vex optimization problem in (8.3) into a fully differentiable algorithm, as shown in [170].
The optimal objective value (α) or the primal and dual variables can be differentiated
with respect to both the configurations of the objects and the geometry of the objects
themselves. In [170] this was used in trajectory optimization to solve for collision-free
trajectories simply by enforcing α > 1 as a differentiable constraint in a motion planner.

8.3 Continuous Collision Detection

With the necessary background on perspective operators, scale-based collision detection,
and differentiable optimization, the novel CCD algorithm can now be introduced that
checks for collisions between two convex sets as they move between configurations.

The core assumption in this CCD framework is that the two objects move linearly
between time steps with a fixed attitude. This motion can be seen in Fig. 8.3, where two
shapes “sweep” between the time steps. Given the two convex sets with positions ri ∈ R3

and attitudes Qi ∈ R3×3, as described in Section 8.2.1, we can introduce the notation
for time. Positions and attitudes from the first time step will be denoted with □(−), and
those from the second time step with □(+). A new normalized time parameter τ ∈ [0, 1] is
introduced where τ = 0 denotes the first time step and τ = 1 denotes the second. Together,
we can express this notation as ri(τ = 0) = r

(−)
i , and ri(τ = 1) = r

(+)
i . A line segment

between these two positions can be calculated with the following,

ri(τ) = τr
(−)
i + (1− τ)r(+)

i , (8.13)

where we simply linearly interpolate from the position at one time step to the position
at the next with a constant linear velocity. The attitudes between the time steps are
simply averaged as Qi, which is straightforward depending on the parameterization of the
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attitude [111, 110]. Now, a scale-based collision-detection problem, similar to (8.3), is
introduced as follows,

minimize
x, α, τ

α

subject to AiQ
T
i (x− r̃i) + αbi ∈ Ki, i = 1, 2,

τr
(−)
i + (1− τ)r(+)

i = r̃i, i = 1, 2,

0 ≤ τ ≤ 1,

α ≥ 0,

(8.14)

where we are searching for the minimum positive scale factor α such that an intersection
exists between the two scaled convex sets as they sweep between the time steps. Similar to
(8.3), a collision exists if and only if α∗ ≤ 1. This is a small convex optimization problem
that is guaranteed to have a solution no matter the configuration of the objects. It makes
no difference to the algorithm if the objects are in or out of collision for any amount of the
sweep, or if they don’t collide at all. The constraint α ≥ 0 is written here as a formality,
since it is implicitly satisfied by the perspective operator.

Once this problem is formed and solved, the primal and dual variables can be used
to calculate the gradients of the optimal α∗ with respect to the poses or geometries of
the objects using (8.12). If Jacobians of the primal or dual variables with respect to the
problem parameters are needed, the implicit function theorem can be used to form these
derivatives with (8.11).

For numerical stability, it is often advantageous to add a very small regularization term
to (8.14),

Jreg = ϵ[∥x− ravg∥22 + (α− 1)2 + (τ − 0.5)2], (8.15)

where ϵ << 1 and ravg ∈ R3 is the average of the four positions (two objects at two time
steps). This regularizer serves to guarantee that (8.14) is strongly convex, and can some-
times help the solver converge in fewer iterations [24, 130]. With a small regularizer in the
range ϵ ∈ [10−8, 10−5], the regularized optimal objective value does not differ meaningfully
from α∗.

8.4 Parallelizable QP Solver

In this section, a fast and efficient Primal-Dual Interior-Point (PDIP) solver will be de-
scribed that is capable of running in parallel on accelerator units (GPU/TPU). Since the
optimization problem in (8.14) is small (5 primal variables), state-of-the-art PDIP methods
can solve this problem quickly and reliably. We focus on polytopes as our convex primitive,
as they are expressive and result in (8.14) being a convex Quadratic Program (QP).

Writing convex optimization solvers on a GPU has become significantly easier in recent
years, with the advent of domain-specific languages like PyTorch [136] and JAX [25]. High-
level Python code can be compiled to run directly on GPUs/TPUs allowing for massively
parallel computation with minimal implementation effort.

104



The challenge in scaling up these computations for our proposed collision detection
comes from the varying sizes of the convex sets in the scene. Since we are focusing on
polytopes in this section, this translates to dealing with polytopes with different numbers
of faces. In JAX, the best way to parallelize a computation is to call the same function over
a list of equal sized arrays. In the case of polytopes with varying numbers of faces, this
results in QPs with different numbers of constraints, violating our assumption of equal-sized
arrays.

In order to ensure that the arrays being parallelized over are of equal size, many algo-
rithms simply choose the largest array in the set and pad all of the smaller arrays with
zeros. In the case of constraints for a QP solver, this results in redundant constraints,
violating the Linear Independence Constraint Qualification (LICQ) assumption that many
solvers rely on to function properly [130, 78]. Violations of LICQ result in solvers failing
due to rank-deficient linear systems caused by a nonuniquness of the dual variables. We
propose a custom PDIP algorithm that solves the necessary linear systems with a block
reduction that is capable of handling redundant constraints.

The solver presented in Alg. 11 handles convex QPs in the following form:

minimize
x, s

1

2
xTPx+ qTx

subject to Gx+ s = h,

s ≥ 0,

(8.16)

with a primal and slack variable x ∈ Rn and s ∈ Rm , a cost described with P ∈ Sn
+

and q ∈ Rn, and an inequality constraint described with G ∈ Rm×n and h ∈ Rm. The
constraint is enforced with a dual variable z ∈ Rm, and the only requirement for the
initialization of this solver is (s, z) ≥ 0. An advanced initialization from [115] can also be
used for added robustness.

To ensure that all the problem instances have the same number of constraints, the
inequality constraint parameters G and h are padded with zeros. To avoid numerical
problems in the solver, care is taken to use a binary mask vector m ∈ Rm that identifies
zero-padded constraints, and a specialized block reduction method is used to calculate
the step directions in Alg. 12. Once a step direction has been computed, an analytical
linesearch is used to ensure non-negativity of the slack and dual variables:

γ = min
(
1, min

i:∆si<0

−si
∆si

, min
i:∆zi<0

−zi
∆zi

)
. (8.17)

8.4.1 Differentiation of the QP

Using the differentiable optimization technique described in (8.12), the gradients of the
optimal objective value J∗ at the primal-dual solution (x∗, z∗) can be formed by simply
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Algorithm 11 Primal-Dual Interior-Point Method

1: function solve qp(P, q,G, h)
2: m← get mask(G, h) ▷ identify empty rows
3: x, s, z ← initialize(P, q,G, h)
4: for i← 1 : max iters do
5: // evaluate KKT and check convergence
6: v1 ← GT z + Px+ q ▷ stationarity
7: v2 ← s ◦ z ▷ complimentarity
8: v3 ← Gx+ s− h ▷ primal feasibility
9: if min(∥v1∥∞, ∥m ◦ v2∥∞, ∥m ◦ v3∥∞) < tol then
10: return: x,m ◦ s,m ◦ z
11: end if
12:

13: // calculate affine step direction
14: ∆xa,∆sa,∆za ← solve step(P, q, z, s, v1, v2, v3)
15:

16: // centering + step correction
17: µ← sT z/ len(s)
18: γa ← linesearch(s,∆sa, z,∆za) ▷ (8.17)
19: σ ← [(s+ γa∆sa)

T (z + γa∆za)/(s
T z)]3

20: v2 ← v2 − σµ+∆sa ◦∆za
21: ∆x,∆s,∆z ← solve step(P, q, z, s, v1, v2, v3)
22:

23: // final linesearch to ensure s, z > 0
24: γ ← min(1, 0.99 linesearch(s,∆s), z,∆z)) ▷ (8.17)
25: (x, s, z)← (x, s, z) + γ(∆x,m ◦∆s,m ◦∆z)
26: end for

Algorithm 12 Interior-Point Linear System Solver

1: function solve step(P,G, s, z, v1, v2, v3)
2: W ← D(z/s)
3: L← cholesky(P +GTWG) ▷ cache and re-use
4: ∆x← L−TL−1(−v1 +GTW (v2/λ− v3))
5: ∆s← −G∆x− v3
6: ∆z ← −(v2 + (z ◦∆s))/s
7: return: ∆x,∆s,∆z
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Figure 8.4: A polytope with position and attitude control navigates a field of moving
obstacles. Differentiable continuous collision detection is used in a trajectory optimization
to solve for the collision-free sequence.

taking the gradients of the Lagrangian as follows:

∇PJ
∗ =

1

2
(x∗)(x∗)T , ∇qJ

∗ = x∗, (8.18)

∇GJ
∗ = z(x∗)T , ∇qJ

∗ = −z∗. (8.19)

From here we can simply write a custom gradient rule in an automatic differentiation
framework like JAX to seamlessly integrate CCD into existing differentiable pipelines.

8.5 Examples

The utility of flexible and differentiable CCD is demonstrated in motion-planning examples
in which gradient-based trajectory optimization is used to solve for collision-free trajecto-
ries. To do this, we consider discrete-time dynamical systems of the form xk+1 = f(xk, uk),
and solve the motion planning problem as a numerical optimization problem:

minimize
x1:N , u1:N−1

N−1∑
i=1

ℓ(xi, ui) + ℓN(xN)

subject to x1 = xinit,

xk+1 = f(xk, uk) i = 1 : N − 1,

α(xk, xk+1) ≥ 1 + d i = 1 : N − 1,

xN = xgoal,

(8.20)

where x1:N and u1:N−1 are the states and controls for an N-step trajectory, xinit and xgoal are
the initial and final conditions, ℓ(x, u) and ℓN(x) make up the cost function, and α(xk, xk+1)
represent the continuous collision constraints that α from (8.14) must be greater than 1+d,
where d ∈ R+ is some margin. From here, this problem can be solved with generic nonlinear
programming (NLP) solvers like SNOPT [61] or Ipopt [187].

8.5.1 Tunneling

The first example, shown in Fig. 8.1, showcases a classic failure mode of discrete collision
checking — tunneling. Trajectory optimization is used to find a trajectory that guides a
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Figure 8.5: A multi-robot assembly task where four robotic arms interact with a structure
in a common workspace. The proposed continuous collision detection is used to certify
collision-free trajectories and is fully differentiable with respect to the configurations of the
robots.

polytope around a wall, and we directly compare the optimal trajectories when DCD and
CCD are used. With DCD (shown in red), the polytope passes directly through the wall
in a straight line towards the goal. On inspection, this is clearly an infeasible trajectory
despite each the configuration at each time step being out of collision. Since the solver
can only reason about discrete collision checks, it is a feasible and optimal trajectory in
the context of the solver. With our differentiable CCD, even with a very coarse trajectory
discretization, the solver is able to avoid tunneling and navigate around the wall instead
of through it.

8.5.2 Moving Obstacles

In this example, shown in Fig. 8.4, trajectory optimization with CCD constraints is used
to navigate a polytope through a field of moving obstacles. Every object in this scene is
moving, and the CCD is able to reason directly about this motion to ensure that there
are no accidental collisions. The resulting collision-free trajectory successfully takes the
polytope from the start to the goal without hitting any of the ten obstacles.

8.5.3 Multi-Robot Assembly

As shown in Fig. 8.5, this scenario involes four Franka Panda robots completing a mock
assembly task in unison in a shared workspace. The robots have had their end effectors
discretized into convex sets and are interacting with a structure made up of polytopes.
CCD ensures the whole operation is collision-free, even between timesteps.

8.6 Conclusion

In this paper we present a fully differentiable continuous collision-detection framework that
is fast, robust, and entirely branch free. This algorithm is readily parallelized in modern
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compute frameworks such as JAX, and directly integrates with automatic differentiation
tools for seamless differentiation through the routine. The resulting method is used in
gradient-based trajectory optimization problems as collision avoidance constraints and is
demonstrated on a range of practical examples.
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Chapter 9
Efficient Online Learning of Contact Force
Models

Contact-rich manipulation tasks with stiff frictional elements like connector insertion are
difficult to model with rigid-body simulators. In this work, we propose a new approach
for modeling these environments by learning a quasi-static contact force model instead of
a full simulator. Using a feature vector that contains information about the configura-
tion and control, we find a linear mapping adequately captures the relationship between
this feature vector and the sensed contact forces. A novel Linear Model Learning (LML)
algorithm is used to solve for the globally optimal mapping in real time without any ma-
trix inversions, resulting in an algorithm that runs in nearly constant time on a GPU
as the model size increases. We validate the proposed approach for connector insertion
both in simulation and hardware experiments, where the learned model is combined with
an optimization-based controller to achieve smooth insertions in the presence of misalign-
ments and uncertainty. Our website featuring videos, code, and more materials is available
at https://model-based-plugging.github.io/.

9.1 Introduction

Model-based control for robotic systems is incredibly effective when the model of the system
is accurate [162]. In many instances, the model can be made accurate through system iden-
tification, where experimental data is used with a parametrized physics model to estimate
geometric, mass, contact, and friction properties [54, 73]. In scenarios where contact-free
rigid-body dynamics accurately capture the behavior of the robot, system identification can
enable highly performant model-based control. For robots in contact-rich settings where
they make and break contact with the environment, system identification and simulation
become much more challenging due to discontinuities and inevitable approximations in the
physics modeling [200].

Modern robotics simulators like MuJoCo [165], Bullet [37], Dart [96], Dojo [78], and
Isaac Gym [105], approximate all bodies as rigid, where friction is either the idealized
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Figure 9.1: Inserting a significantly misaligned connector in MuJoCo, where a scripted
insertion (left) results in large contact forces shown in white. During a short calibration
sequence, a model is learned that predicts these contact forces as a function of the con-
figuration of the connector and applied control wrench. A model-based controller is then
able to solve for actions that minimize these forces and guide the connector to a smooth
insertion (right). Our approach is fast, data efficient, robust to misalignments and uncer-
tainty, and does not require any a priori knowledge of the plug.

Coulomb friction or a closely related approximation. This results in a significant gap
between simulation and reality, even with the use of system identification [1, 76, 34, 47].
Accurate simulation of contact-rich manipulation tasks is challenging due to deformability
in the bodies, approximate geometries, and complex friction behavior not captured by
Coulomb friction [44].

This paper focuses on the problem of robotic connector insertion, which displays rich
contact interactions between a plug and its corresponding socket. This task is difficult
to simulate accurately because of the precision required (being off by a millimeter results
in jamming), and the contact/friction interactions between the two slightly deformable
objects. The point-contact assumption that rigid-body simulators make begins to break
down as the contact area dynamically changes. As a result, accurately simulating the
insertion is challenging, and a policy that relies on the accuracy of this simulation is
poorly suited for the diverse range of connectors available. Furthermore, even if a single
connector style is modeled in great detail, there exists a significant amount of variability
amongst connectors of the exact same specification.

The difficulty of the connector-insertion problem has motivated multiple approaches,
some model-based and others model-free. The authors in [199] propose an offline model-
free meta-reinforcement-learning algorithm to pre-train policies for insertion tasks using
offline demonstration data and then adapt them to new tasks using online fine tuning. In
[52], the insertion is divided into an alignment phase and an insertion phase. During the
alignment phase, a policy that relies on tactile feedback is used to line up the connector,
and insertion is achieved with a separate RGB-image-based policy. In [125], a simulation is
used with domain randomization to train a robust policy over a wide variety of connectors,
enabling generalization; and in [161] a simulation-aware policy training style is used to
prioritize experiences that align with the physics model. Alternatively, in [90], a policy
is used solely to generate a search pattern that systematically inserts connectors in the
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presence of model and state uncertainty. In all of these approaches, significant time and
effort must be devoted to offline training from experiments, making rapid adaptation to
new plugs challenging.

In this work, we present a different approach to model-based connector insertion that
relies on a learned quasi-static contact-force model instead of a full simulator. Many
contact-rich robotic manipulation tasks can be assumed to be quasi-static, meaning the
system moves slowly enough that the Coriolis forces and accelerations in the dynamics
are small enough to be ignored [113, 65]. This approximation allows us to describe the
state of the robot solely by its configuration (without velocity). When compared to full
second-order dynamics simulation, quasi-static simulators are more stable, simpler, and
have shown great promise for use in contact-rich manipulation planning [132, 156].

When analyzing experimental data, a linear model with an engineered feature vector
was found to be expressive enough to accurately predict contact forces on the connector
during an insertion task. The linearity (in the features) of this model allows for an entirely
decoupled model-learning process, where a novel Linear Model Learning (LML) filter is
developed for learning the maximum a posteriori estimate to global optimality in a recursive
fashion. The resulting algorithm is entirely free of matrix inversions, and the run time is
nearly constant on a GPU as the size of the model increases. This model is then used in
a convex-optimization-based control policy where the connector is smoothly inserted. The
contributions of this paper include:

• A validated contact-force model that linearly maps a feature vector with information
about the configuration and control to predicted force torque sensor values during a
connector insertion.

• The Linear Model Learning (LML) algorithm that recursively updates the optimal
estimated contact force model without any matrix inversions.

• A model-based controller that uses this contact force model to achieve smooth con-
nector insertions.

9.2 Feature-Based Contact Force Model

Conventionally, physics simulations used in model-based control take the form of a discrete
dynamics function xk+1 = f(xk, uk), where the current state, xk, and control, uk, are used
to calculate the state at the next time step, xk+1. The state of the system, x, is normally
comprised of a configuration, q ∈ Rnq , and velocity, v ∈ Rnv [162]. For systems modeled
with standard rigid-body dynamics, the full second-order dynamics depend on both the
configuration of the system as well as the velocity. However, for the damped, slow-moving
systems common in contact-rich manipulation, velocity-dependent terms like Coriolis forces
can be small enough to be effectively ignored [113]. The quasi-static assumption also
simplifies the actuator dynamics of impedance-controlled robots, where the behavior of
the controller is directly incorporated as part of the model [134].

For quasi-static contact-rich tasks where the end effector of the robot is in constant
contact with the environment, we can learn a contact-force model and still maintain all
of the predictive power of a full simulator. To accurately represent the dynamics in this
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regime, all we need is a model that takes in the current configuration of the robot and
applied control, and outputs the predicted force-torque sensor reading. With the ability to
predict how the force-torque sensor responds to control inputs, a model-based controller is
able to fully reason about the contact environment.

The model we seek to learn takes the configuration of the system, the control, u ∈ Rnu ,
and the contact force torque measurement, ỹ ∈ Rny as inputs. Specifically, we are going
to map the configuration and control into a feature vector, w ∈ Rnw , using an arbitrary
mapping function,

w = Ω(q, u), (9.1)

after which we learn a linear mapping that transforms the feature vector into the predicted
force, f ∈ R3, and torque, τ ∈ R3, on the connector, ỹ = [fT , τT ]T ∈ R6:

ỹ ≈ G̃w, (9.2)

where G̃ ∈ Rny×nw . There are multiple benefits to representing our force model as a linear
function of the feature vector, both in terms of system identification and control. For
system identification, the resulting optimization problem is convex and can be solved to
global optimality in real time with minimal computational cost. For control, as long as the
feature vector in (9.1) is linear in u, the predicted force and torque can be minimized with
convex optimization. This is true even in the presence of a feature vector that is highly
nonlinear in q.

9.3 Linear Model Learning

Given data from a trajectory, a maximum-likelihood estimate (MLE) of the linear mapping
G̃ can be computed with numerical optimization by penalizing differences between the
predicted and observed sensor measurements [197]. To express this, we consider our contact
force model from (9.2) with a force-torque sensor noise covariance R ∈ S

ny

+ , and introduce
the following optimization problem:

minimize
G̃

m∑
k=1

∥G̃wk − ỹk∥2R−1 , (9.3)

where the subscript k denotes the quantity from the kth timestep, m is the length of the
trajectory, and ∥ν∥2R−1 = νTR−1ν. It is worth pointing out that the primal variable in (9.3)
is a matrix and not a vector, so it is not a canonical least squares problem. That being said,
the linearity of the model still makes this an unconstrained convex optimization problem,
where a closed-form solution exists [24]. However, for systems where the dimension of
the feature vector is large, this problem can be both expensive to solve and numerically
ill-conditioned when the trajectory is long [16].

There is a long history of solving variants of (9.3) from data, starting with the Ho-
Kalman algorithm [72] to more modern versions as shown in [54, 58, 68, 66]. Instead of
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solving this problem directly, the following subsections walk through a method for decom-
posing (9.3) into a set of smaller decoupled problems that can be solved in parallel, as well
as a recursive method for solving this problem online in a scalable and numerically robust
way that completely avoids matrix inversions.

9.3.1 Decoupled Model Learning

The first step in decoupling (9.3) into a set of ny smaller problems is to take a Cholesky
decomposition of the inverse sensor covariance, R−1, such that R−1 = LLT , where L ∈
Rny×ny is the lower-triangular Cholesky factor. From here, (9.3) can be re-written as the
following:

minimize
G̃

m∑
k=1

∥LT G̃wk − LT ỹk∥22 (9.4)

Next, we introduce new variables G = LT G̃ and y = LT ỹ that decouple each row of G and
y from the others:

minimize
G

m∑
k=1

∥Gwk − yk∥22, (9.5)

where the solution to (9.4) can be recovered from the solution to (9.5) by simply trans-
forming our matrix back with G̃ = L−TG. The inverse L−T is computed once offline for a
specific sensor and stored.

Next, we add regularization to the problem to improve conditioning and ensure that
values in G are of reasonable magnitudes. To do this, a quadratic regularizer is added in
the following manner:

minimize
G

m∑
k=1

∥Gwk − yk∥22 + ∥Gb∥22, (9.6)

where b ∈ Rnw contains the regularization weights. This allows for (9.6) to be decoupled
into a set of ny problems where each row of G is solved for entirely independently. The
resulting optimization problem over the jth row of G, and y can now be formulated:

minimize
g(j)

m∑
k=1

∥(g(j))Twk − y(j)k ∥22 + (bTg(j))2, (9.7)

where the g(j) corresponds to the jth row of G. This allows us to solve ny parallel instances
of (9.7) with nw decision variables each, instead of one large problem with ny ·nw variables.
It is important to note that there are no approximations made between (9.6) and (9.7),
and that they will always recover the same solution.

9.4 Linear Model Learning with a Kalman Filter

The problem posed in (9.7) is an unconstrained convex optimization problem whose solu-
tion can be computed by solving a single linear system, with a solution complexity that is

115



cubic in the length of the feature vector, nw. In scenarios where online, real-time system
identification is desired, a recursive method can be used that updates the solution for each
new sensor measurement. One option for solving (9.7) in a recursive fashion would be to
use a standard Recursive Least Squares (RLS) algorithm. While this method can work,
it has three major downsides: Long trajectories present numerical instability, adaptively
updating the regularizer is expensive and approximate, and most importantly, there is no
way to directly reason about process noise on the parameters [98, 99, 16].

To tackle these issues, we formulate our model-learning problem as a dynamical system
and use a Kalman Filter to estimate each row of G independently. First, the connection
between the canonical Kalman Filter and its corresponding optimization problem must
be made [87]. For a canonical dynamical system with a state x ∈ Rnx and measurement
z ∈ Rnz , the dynamics and measurement functions are described by,

xk+1 = Axk + qk, q ∼ N (0, V ), (9.8)

zk = Cxk + rk, r ∼ N (0,W ), (9.9)

where q and r are the (unknown) process and sensor noises, and x is the (unknown) state
being estimated. The Kalman Filter is then initialized with a Gaussian belief over the
initial condition, x0 ∼ N (µic,Σic). Since the initial belief, the process noise, and the
sensor noise are all assumed to be Gaussian, the maximum a posteriori (MAP) problem
takes the form of an unconstrained convex quadratic program:

minimize
µ0:m

∥µic − µ0∥2Σ−1
ic

+
m−1∑
k=0

∥µk+1 − Aµk∥2Q−1 + ∥zk+1 − Cµk+1∥2R−1 , (9.10)

where the trajectory µ0:m that minimizes the covariance-weighted errors in the dynamics,
the sensor, and the initial belief is solved for. This is the optimization problem that the
Kalman Filter solves (to global optimality) in a recursive fashion.

9.4.1 Parallelizing a Kalman Filter over Sensor Dimensions

We now convert our decoupled optimization problems from (9.7) into a form such that a
Kalman Filter can be used to solve for the estimates of each of the ny rows of G in parallel.
From here, a common structure amongst these ny filters allows us to handle the estimated
G directly in a single, parallelizable LML algorithm in which the most expensive operations
are matrix multiplications.

To start, the estimate of each row of G has its own Gaussian belief. Each of these
ny beliefs are represented with a mean estimate ĝ(j) and covariance Σ(j). From here, the
discrete-time dynamics for the filter are:

g
(j)
k+1 = g

(j)
k + q

(j)
k , q(j) ∼ N (0, Q), (9.11)

where q(j) ∈ Rnw is the (unknown) additive Gaussian process noise, with a covariance of
Q ∈ Snw

+ . This can also be interpreted as a more expressive version of a “forgetting factor”,
where a non-zero process-noise covariance quantifies the expected change in parameters
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Figure 9.2: A comparison between run times of the LML algorithm on a CPU and an
NVIDIA V100 GPU. The LML algorithm is comprised entirely of highly parallelizable
operations (no matrix inversions), so the GPU is able to run the algorithm in constant
time as the number of parameters in the model grows by a factor of 100.

over the course of the experiment, therefore putting more emphasis on newer measurements
than old.

The measurement function in the filter for row j is where we use the row parameters
g(j) with our feature vector w to predict the jth measurement:

y
(j)
k = wT

k g
(j)
k + vk, v ∼ N (0, 1.0), (9.12)

where v ∈ R is the (unknown) sensor noise with a variance of one, a result that comes
from our change of variables in (9.5). Importantly, the measurement in (9.12) is a scalar,
which means the computation of the Kalman Gain only requires the inversion of a scalar
instead of a matrix:

ℓ = (Σw)(wTΣw + 1)−1 =
Σw

wTΣw + 1
, (9.13)

eliminating the only matrix inversion present in the Kalman Filter.
The dynamics and measurement equations in (9.11-9.12) are in the canonical form

shown in (9.8-9.9), where A = I and C = wT
k . Critically missing from these matrices

is any reference to row j, meaning the filters for all ny rows have the same process and
measurement functions. This enables two important commonalities amongst the ny filters:
They all share the same covariance and Kalman Gain. Therefore, we only need to maintain
a single “global” covariance Σ that represents each of the ny rows, and use the shared
Kalman Gain, ℓ ∈ Rny to update everything.

Using the Kalman Gain, the updates to the mean estimate of each row are:

ĝ
(j)
k+1|k+1 = ĝ

(j)
k+1|k + ℓ(y

(j)
k+1 − ĝ

(j)
k+1|kwk+1) ∀j ∈ [1, ny], (9.14)
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Algorithm 13 Linear Model Learning

1: input Ĝk|k,Σk|k, wk+1, yk+1 ▷ belief at time t
2: /* predict belief updates */

3: Ĝk+1|k ← Ĝk|k ▷ no change to mean
4: Σk+1|k ← Σk|k +Q ▷ covariance propagation
5: /* innovation and Kalman Gain */

6: z ← yk+1 − Ĝk+1|kwk+1 ▷ innovation
7: s← wT

k+1Σk+1|kwk+1 + 1 ▷ vector of innovation variances
8: ℓ← Σk+1|iwk+1/s ▷ Kalman Gain via element-wise division
9: /* update mean and covariance */

10: Ĝk+1|k+1 ← Ĝk+1|k + zℓT ▷ parallelized mean update with outer product
11: Σk+1|k+1 ← (I − ℓwT

k+1)Σk+1|k(I − ℓwT
k+1) + ℓℓT ▷ Joseph form covariance update

12: return Ĝk+1|k+1,Σk+1|k+1 ▷ belief at time t+ 1

Algorithm 14 Adaptive Regularization of Belief State

1: input Ĝ,Σ, ρ ▷ belief and regularizer
2: for i = 1 to nw do ▷ this loop assumes 1-based indexing
3: c← 0nw

4: c[i]← 1
5: r ← (1/ρ[i])2

6: s← Σ[i, i] + r
7: ℓ← Σ[:, i]/s
8: Σ← (I − ℓcT )Σ(I − ℓcT ) + rℓℓT

9: Ĝ← Ĝ− Ĝ[:, i]ℓT
10: end for
11: return Ĝ,Σ
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Figure 9.3: The sim-to-real gap for a connector insertion calibration sequence, where the
real force torque sensor measurements are solid and the predicted measurements from our
learned model are dotted. The learned model is able to accurately capture the contact
force behavior of the connector inside the socket.

and since the Kalman Gain is shared, these individual row updates can be broadcast to an
estimate of the full matrix Ĝ :

Ĝk+1|k+1 = Ĝk+1|k + (yk+1 − Ĝk+1|kwk+1)ℓ
T , (9.15)

where the parallelism is simply handled by a vector outer product and matrix addition.
Using this technique on the parallel filters results in the LML algorithm, which is detailed
in Algorithm 13.

Lastly, the regularization term from (9.7) must be included in the LML algorithm as
an initialization. To do this, the cost terms associated with the initial Gaussian belief in
the MAP problem (9.10) are adapted to replicate the regularization in (9.7) in the form of
an initial Gaussian belief over row j:

ĝ
(j)
0|0 = 0nw , Σ0|0 = diag(1/b2). (9.16)

With this initialization, the LML algorithm is called recursively every time a new mea-
surement is available. The entire algorithm is matrix-inversion free, requiring only simple
matrix products and additions that are trivial to parallelize on a GPU. To demonstrate the
importance of this, timing results of the LML algorithm run on a GPU and CPU are shown
in Fig. 9.2, where the run time on a GPU stays constant as the number of parameters in
Ĝ grows by a factor of 100.
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9.4.2 Adaptive Regularization

In the original cost function of (9.3), the relative importance of the regularization term
is dependent on the trajectory length. As the trajectory gets longer, the impact the
regularization has on the estimate decreases. In cases where the LML algorithm is being
run for an unknown amount of time, choosing the appropriate regularizer offline is difficult.
To deal with this, we present a method for updating the regularization term online that
can handle arbitrary quadratic regularization and does not require any matrix inversions.

We specify this additional regularizer in a general form ∥Gρ∥22 that will be included in
the cost function of (9.3). To add this to the LML algorithm, the connection between the
MAP problem in (9.10) and the Kalman Filter is used once again. As before, we formulate a
fictitious measurement equation for each ĝ(j) such that we recover the quadratic regularizer
in the MAP cost, then use the same parallelization strategy to generalize it to Ĝ.

Our estimated mean ĝ(j) will have stationary dynamics, but we use a measurement
function where each row has the values of the row j returned,

zk = ĝ
(j)
k + rk. (9.17)

By expecting this “measurement” to be zero, we use our regularizer as a covariance for the
fictitious sensor, r ∼ N (0, diag(1/ρ2)), reconstructing our desired regularization cost in the
MAP problem. Normally the Kalman Filter requires a matrix the size of the measurement
to be inverted, however, since this fictitious sensor noise is diagonal, we can use the method
of sequential scalar measurement updates to once again avoid any matrix inversions [86].
Similar to the LML algorithm, these operations can be broadcast to each row of G using
matrix multiplication, as shown in Algorithm 14.

9.5 Experiments

We demonstrate LML algorithm on a contact-rich connector-insertion task, where the
resulting contact-force model is used in a convex-optimization control policy. This approach
is first shown to work in simulation with MuJoCo, then on hardware with a Franka robot
arm with a parallel gripper holding a standard C13 power plug.

To learn the relationship between the configuration, control, and contact wrench on the
plug, the LML algorithm will be used with the following feature vector:

w = vcat(r, vec(R), rdes, ϕ, 1), (9.18)

where r ∈ R3 is the cartesian position of the end effector, R ∈ SO(3) is the rotation
matrix describing the attitude of the end effector, rdes ∈ R3 is the desired position sent to
an impedance controller, ϕ ∈ R3 is the axis-angle rotation between current attitude and
desired attitude, and the 1 is included to account for a constant bias. The control inputs
in this feature vector are rdes and ϕ, where the axis-angle parameterization is used to avoid
any attitude-related constraints [83].

The LML algorithm learns a linear relationship between this feature vector and the force
torque sensor, y ≈ Gw. To do this, a calibration sequence is run where both the position
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Figure 9.4: Calibration and insertion of a power plug into a socket with a Franka robot
arm and parallel gripper.
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Figure 9.5: Magnitude of the force on the plug in the XY axis during insertion of eight
different plugs. The scripted insertion leaves a constant force on the plug, after which the
policy is used to reduce the force on the connector.
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and attitude are varied. The force-torque sensor measurements and feature vectors are
input to the LML algorithm during this calibration, and the resulting estimated sensor
measurements are able to closely align with the true sensor measurements as shown in
Fig. 9.3. To align the connector for insertion, a model-based controller uses this linear
relationship to solve for controls that minimize the resistance measured by the force-torque
sensor. The controller is posed as the solution to the following optimization problem:

minimize
rdes, ϕ

∥Sŷ∥22 + λ∥r − rdes∥22 + µ∥ϕ∥22
subject to ŷ = G[rT , vec(R)T , rTdes, ϕ

T , 1]T ,
∥r − rdes∥∞ ≤ 1 cm,
∥ϕ∥∞ ≤ 3◦,

(9.19)

where S = diag([1, 1, 0, 1, 1, 1]) is used to penalize all forces and torques except for force
in the Z (plug insertion) direction, λ ∈ R+ and µ ∈ R+ are regularization weights, and
the primal constraints ensure the commanded end-effector pose doesn’t deviate too far
from the current pose. Due to the linearity of our model, this problem is a small convex
quadratic program, for which there are many available solvers for fast online execution
[115]. We have found that a solver is not necessary since the controls can be sub-optimally
clipped in the rare case the constraints are violated.

This system-identification and control strategy was first demonstrated in MuJoCo, as
seen in Fig. 9.1, where the controller was successfully able to align the plug with initial
misalignments. Second, a Franka robot arm with a parallel gripper was able to insert the
C13 power plug into eight different sockets in the presence of misalignment, sensor noise,
and actuator uncertainty. In both of these scenarios, LML was run on the force-torque
sensor data during a quick 10-second calibration sequence, after which the controller was
turned on and smooth insertion was achieved. On the Franka, the forces on the plug during
these eight alignments are shown in Fig. 9.5, where the forces from the initial misalignment
are dramatically reduced by over 80% once the controller takes over.

9.6 Conclusion

This work proposes a new approach for the modeling and control of connector-insertion
tasks, where an estimated quasi-static contact model is used to predict the contact forces
on the connector as a function of the configuration and control. This contact force model
is learned online to global optimality with a novel Linear Model Learning algorithm that is
free of matrix inversions. The runtime of this algorithm is shown to be constant on a GPU
as the model size increases, since it is entirely comprised of parallelizable operations. The
effectiveness of this modeling strategy is demonstrated both in simulation and in hardware
experiments, where the contact-force model is used to solve for an optimal alignment policy
for C13 power connectors.
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Chapter 10
Convex Quasi-Dynamic Simulation of Rigid
Point Clouds with Torsional Friction

Many common manipulation tasks move slowly enough that velocities and Coriolis forces
do not contribute meaningfully to the dynamics of the robot. As a result, quasi-dynamic
simulation of these systems, in which all forces are assumed to be in equilibrium, can pro-
duce physically accurate results for use in motion-planning and control. Recent work has
combined the quasi-dynamic model with a relaxed formulation of Coulomb friction, where
the resulting dynamics are the solution to a convex quadratic program. We extend this
recent work by directly manipulating rigid point clouds, without the need for meshing or
decomposition into convex primitives. We also introduce a novel torsional friction model
to mimic the frictional behaviors of the sorts of patch contacts that exist on real systems.
These ideas are demonstrated in a grasping example, where a dense point cloud is ma-
nipulated with and without torsional friction, clearly showing the utility of the torsional
friction model.

The contents of this chapter have been previously published at the ICRA Leveraging
Models in Contact-Rich Manipulation Workshop in Tracy and Manchester [172]

10.1 Introduction

Accurate and computationally efficient simulation for contact-rich robotic manipulation
tasks is crucial for developing model-based control policies. Existing simulators like Bullet
[37], Drake [163], Dart [96], and MuJoCo [166], are able to model complex contact and
friction interactions between a wide variety of geometries. While these simulators evaluate
the full second-order dynamics of a robot, for many manipulation tasks, these second-order
dynamics are not always necessary, and substantial computational savings are possible.

For manipulation systems where objects are generally moving slowly, the velocities of
the bodies are small enough that accelerations and Coriolis forces do not impact the dy-
namics in a meaningful way. As a result, quasi-dynamic [114] simulation methods, in which
all forces are assumed to be in equilibrium, can be employed to solve for displacements in
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the configurations at each time step.
This work is inspired by [134], where a relaxed friction model from [10] is incorporated

into a quasi-dynamic simulation method that treats actuators as impedances. Each simula-
tion step consists of solving a small, well-defined convex Quadratic Program (QP), making
the method fast and efficient, with virtually none of the stability problems encountered
with full second-order dynamics formulations. This quasi-dynamic model was used success-
fully in a global planner in [132] where it was leveraged to build sophisticated motion plans
for common manipulation tasks. In both of these works, only relatively simple shapes like
spheres, capsules, and boxes were considered, due to the complications involved in collision
checking.

In this paper, we make two contributions to the state of the art for quasi-dynamic
simulation: the first is a computationally efficient framework for computing the dynamics
of rigid objects whose complex geometry is represented by point clouds, and the second
is a convex torsional friction model to effectively model patch contacts and avoid some of
the non-physical behaviors seen when manipulating a rigid point cloud with rigid manip-
ulators. Since the new torsional friction model is also represented as a convex constraint,
each simulation step can still be computed efficiently by solving a QP. Together, these
contributions enable fast and robust simulation of manipulation tasks involving complex
non-convex geometries that would otherwise be challenging to decompose into simpler
primitives.

10.2 Convex Quasi-Dynamic Models

This section describes the general quasi-dynamic formulation with actuators modeled by
impedances, closely following [134, 133]. The configuration of the whole system, q ∈
Rnu+na , can be partitioned into an actuated part, qa ∈ Rna , and an un-actuated part
qu ∈ Rnu , stacked as q = [qTa , q

T
u ]

T . In a quasi-dynamic model, there is no accumulation of
velocity between time steps. As a result, a new velocity or a configuration displacement is
computed at each time step.

The actuated degrees of freedom are treated as if they were controlled with impedance
control. This means that we have some diagonal joint stiffness matrix Kq ∈ Sna×na , with
the generalized force τk modeled as:

Kqδq̄a = τk, (10.1)

where δq̄a is the desired change in actuated configuration. The un-actuated degrees of
freedom are simply acted upon by an external generalized force τa, and contact forces.

10.2.1 Contact and Friction Model

Rigid contact and Coulomb friction can be incorporated into a quasi-dynamic model in the
same fashion as a second-order dynamic model. First, collision information between pairs
of convex objects can be computed with any number of methods, given that they return
the closest points between objects as well as a contact normal vector [60, 151, 131, 169].
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Figure 10.1: Quasi-dynamic simulation of grasping a point cloud with and without torsional
friction on the points. In the bottom sequence of frames, a simulation without torsional
friction results in non-physical rotation of the bunny about single-point contacts with each
gripper. Our method (top) includes torsional Coulomb friction at each contact point to
avoid this behavior.

As shown in figure 10.2, these closest points are denoted α and β, with the signed-distance
function (SDF) between these denoted by ϕ. Each of the nc pairwise contact interactions
has its own α, β, normal vector pointing from α to β, and a set of orthogonal tangent
vectors d1 and d2. Together, the set {d1, d2, n} describe a dextral triad of orthonormal
vectors [120, 89].

In [10], Anitescu introduces a convex relaxation of tangential Coulomb friction that
is exact when objects are sticking, and only introduces a slight ”boundary layer” when
objects are sliding. This relaxation allows for the inclusion of friction as a linear inequality
in a quadratic program, enabling convex time-stepping methods [133]. In this work, we
extend Anitescu’s friction model to handle torsional friction about the contact normal.
This section omits indices that specify which contact pair is being considered for clarity,
but the method extends to an arbitrary number of contacts.

A Jacobian mapping forces λi ∈ R3 at the contact point into generalized coordinates is
calculated by taking the Jacobian of the following function with respect to the generalized
velocity v ∈ Rnv :

f(q, v) =

[
νβ − να

nT (ωβ − ωα)

]
, (10.2)
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Figure 10.2: Description of contact geometry for a given signed distance function ϕ =
∥β − α∥, where α and β are the closest points between two convex shapes. The unit
contact normal vector n extends from α to β, with a set of orthogonal tangent-plane
vectors d1 and d2.

where the relative velocity of the contact points is calculated by taking the difference
between the velocity of β (νβ ∈ R3) and α (να ∈ R3). This Jacobian will be referred to as
J :

J =
∂f(q, v)

∂v
. (10.3)

where each vector in (10.2) is resolved in the world frame. With this Jacobian, we can now
write our friction constraints for a given point as the following:

ϕ+ [JT (ñ+ d̃i)]
T δq ≥ 0 ∀i (10.4)

where ñ = [nT , 0]T , and the the first four d̃’s describing the standard pyramidal tangential
friction-cone approximation are the following:

d̃1 =

[
µvd1
0

]
, d̃2 =

[
µvd2
0

]
, (10.5)

d̃3 =

[
−µvd1

0

]
, d̃4 =

[
−µvd2

0

]
. (10.6)

We also introduce two more d̃’s describing torsional friction:

d̃5 =

[
03
µω

]
, d̃6 =

[
03
−µω

]
, (10.7)

where µv ∈ R+ is the tangential coefficient of friction and µω ∈ R+ is the torsional coeffi-
cient of friction. These six linear inequalities describe the contact and friction for a given
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pair and can be vertically concatenated into a single Aδq ≥ b constraint for convenience:

A =


JT (ñ+ d̃1)

JT (ñ+ d̃1)
...

JT (ñ+ d̃6)

 , b = −ϕ16. (10.8)

10.2.2 Optimization Formulation

The force balance for the actuated and un-actuated components of the configuration with
contact forces can be posed as,[

hKqδqa − hKqδq̄a + τa
1
h
Muδqu − hτu

]
+

nc∑
n

AT
j λj = 0, (10.9)

where the contact/friction model is described as follows:

Ajδq ≥ bj, (10.10)

λj ≥ 0, (10.11)

(Ajδq − bj) ◦ λ = 0. (10.12)

These conditions are the KKT optimality conditions for a convex Quadratic Program
(QP) where (10.9) is stationarity, (10.10) is primal feasibility, (10.11) is dual feasibility,
and (10.12) is complementarity [24]. This QP is as follows:

min
δq

1

2
δqT

[
hKq 0
0 Mu/h

]
δq − h

[
Kqδq̄a + τa

τu

]T
δq

s.t. Ajδq ≥bj, ∀j ∈ E
(10.13)

where E is the set of contact pairs being considered and h ∈ R+ is the time-step size. For
large point clouds, this pruning of constraints is critical for keeping the resulting QP small.
Another benefit to the QP formulation is differentiability: In recent years, differentiable
convex optimization has enabled smooth automatic differentiation through QP solvers with
good results [177, 78, 8, 156].

10.3 Numerical Examples

Two examples are shown to demonstrate the behavior and utility of our formulation: The
first example is a simple spinning sphere that showcases the tightness of the relaxed friction
constraints, and the second is a more practical example of gripping a dense point cloud
with and without torsional friction.
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Figure 10.3: Visualization of the boundary layer that exists only when a point in contact
begins rotating due to an external torque τ . In the exact same fashion as the tangential
friction constraints, a boundary layer is introduced during sliding that is proportional to
the time step h.

10.3.1 Torsional Boundary Layer

To demonstrate the boundary layer induced by the relaxed torsional friction constraints,
figure 10.3 demonstrates what happens when a sphere in contact with the floor is spun.
An increasing external torque is applied to the sphere, and up until the maximum al-
lowable friction torque is saturated, the sphere does not move. Once the external torque
exceeds this limit, the sphere begins to spin and lifts off from the surface by a fraction of
a centimeter.

This boundary-layer behavior mirrors the tangential friction case, where this is the only
deviation from Coulomb friction and the size of this boundary layer decreases with step
size. For most manipulation tasks that aren’t pushing or sliding, full sticking behavior is
desirable, making this relaxed model appropriate.

10.3.2 Grasping a Point Cloud

In this example, shown in Fig. 10.1, parallel grippers are used to grasp a point-cloud
bunny with and without torsional friction. The bunny was modeled as a rigid body with
992 points, each of which was constrained to consider the floor, the left gripper, and the
right gripper. The simulator checks the signed distance function for each of these 992
points with respect to the three objects, and selects five points for each object to include
in the quadratic program. Each of the selected points contributes the constraints shown
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Figure 10.4: Average timing results for a step in the quasi-dynamic simulator with the
bunny where the total time was <90 µs for a time step size of h = 0.01s. A majority of
the time is spent solving the QP, despite the fact there are almost 3,000 signed distance
functions evaluations.

in (10.8) to the optimization.
While these five closest points in question can change from time step to time step,

the size of the QP remains the same. The resulting QP for this example has 13 primal
variables with 80 inequality constraints, and is solved with a custom primal-dual interior-
point algorithm [116, 130, 183] that leverages templating based on the number of contacts
considered during a simulation.

When the grippers close on the bunny, it is possible for there to be single points of
contact with each gripper. In this case, the lack of torsional friction results in the bunny
rotating about these contact points. While this is technically correct behavior given point
contacts, the true system does not exhibit this behavior due to patch-contact effects, re-
sulting in a significant sim-to-real gap. On a real robotic system, there is always some
compliance either on the gripper or the object that manifests in a patch contact instead
of a point contact. The patch contact provides a lever arm for torsional friction, prevent-
ing the bunny from pivoting. Just like with tangential friction, the torsional friction is
proportional to the normal force on the contact.

By including torsional friction for each point contact, we are able to replicate torsional
friction behaviors while still treating the object as a rigid point cloud.

The full simulation step takes less than 90 µs for a time step size of h = 0.01s., with the
profile of this function shown in Fig. 10.4.1 Since a majority of the time is spent solving
the QP, there is reason to believe this sort of simulation makes more sense on a CPU than
a GPU, despite the possibility of a very dense point cloud. There may be cases where
the point cloud is dense enough that computing and sorting all of the pairwise contacts is
the limiting computational factor, in which case a GPU implementation would make more
sense.

1Timing results are reflective of a Mac M1 Pro, running Julia 1.9.2
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Chapter 11
The Trajectory Bundle Method

We present a derivative-free trajectory optimization technique that approximates functions
with linear interpolation instead of using a Taylor series. The resulting algorithm, the
trajectory bundle method, is able to exploit accelerators to compute parallelized samples
of the cost, dynamics, and constraint functions to form basis for linear interpolation. These
so-called bundles are then used in a convex optimization problem that is solved for the next
iterates within a trust region. This process is repeated until tight constraint satisfaction
is achieved, and is a significant improvement over existing derivative-free optimization
techniques when applied to trajectory optimization problems. The efficacy of this method
is demonstrated on a variety of robotics platforms.

11.1 Introduction

Linear dynamical systems of the form x+ = Ax + Bu underpin many of the foundational
methods in modern optimal control. Ideas such as the Linear Quadratic Regulator (LQR)
and convex trajectory optimization are able to reason about dynamical systems of this form
in a way that is exact and globally optimal [87, 23, 24]. As a result, these techniques are
often applied to nonlinear systems where a locally approximate linear dynamical system is
used instead of the nonlinear model in a process called linearization [150]. In many cases,
this approximation is appropriate given this approximation is not used too far outside
of the linearization point where the approximation was formed. By being careful about
where these approximations are initialized and how far from their linearization point they
are being used, this method of linearizing nonlinear systems can be extremely effective in
practice, even for highly nonlinear systems. The two caveats here are that the nonlinear
system must be both smooth and differentiable.

For many systems such as robotic arms, quadrotors, and vehicles, this assumption
of smooth differentiability is appropriate. For rigid-body dynamics, there are specialized
methods for computing derivatives through the continuous-time dynamics in a fast and
efficient way [50]. However, there are also scenarios where these derivatives are unavailable,
prohibitively expensive to compute, or unreliable. If the dynamics model is learned from
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data, the approximation of the dynamics function may be good, while the approximation
of the derivatives may be very poor. This scenario is often explored in the context of
model-predictive path-integral control, where a learned simulator is only used to produce
parallelized rollouts [195, 188]. Another scenario in which derivatives are unavailable or
unusable is in the presence of systems that make or break contact. While there has been
a lot of recent interest in making contact simulation differentiable [51, 128, 132, 170, 155,
78], there remains a strong need for optimal control methods that do not rely on these
derivatives at all.

A prevalent trend in robotic simulation is the introduction of simulators that can be
run on accelerators for massively parallel simulation. Popular simulators like Isaac Sim
[105, 121], Brax [51], and MuJoCo XLA (MJX) [165], are all capable of running thousands
of simulations in parallel. This paper looks to leverage the innovation of parallel simulation
to motivate a new optimal control paradigm where derivative-free simulations are used to
describe the dynamics and cost landscapes present in the problem. To this effect, we present
the trajectory bundle method for solving nonconvex trajectory optimization problems in an
entirely derivative-free manner. This method uses interpolated short simulations instead of
derivative-based linearization to approximate the cost, dynamics, and constraint functions
in the problem. The result is a simple and efficient trajectory optimization solver that can
fully utilize parallelized simulation without requiring any derivatives.

Derivative-Free Optimization (DFO) is a well-studied technique for solving optimization
problems where derivatives are unavailable for whatever reason. John Dennis gives an
appropriate description of motivation for DFO problem in [140] as to “find the deepest
point of a muddy lake, given a boat and a plumb line, when there is a price to be paid
for each sounding”. With modern accelerators capable of massively parallel dynamics,
cost, and constraint evaluation, there is still a price to take soundings, but no longer a
price for each sounding. In a seminal 1965 paper, the Nelder-Mead method for derivative-
free function minimization was proposed, where a simplex of sample points is used to
approximate the cost landscape instead of derivatives. Methods like Mesh Adaptive Direct
Search (MADS) [11] and NOMAD [95, 12] followed, with improvements to the Nelder-Mead
method.

Although there has been much work on general DFO [35, 93, 36], there are two notably
similar approaches to the trajectory bundle method. The first is the Constrained Optimiza-
tion by Linear Interpolation (COBYLA) solver, where the cost and constraint functions
are approximated with linear interpolation [140], and [32], where a residual cost function
structure is assumed and samples are used for linear interpolation. The trajectory bundle
method builds on these two methods and specializes to trajectory optimization problems
where the decision variables are only coupled via the dynamics constraints. By exploiting
this problem-specific structure and massively parallelizable simulation, the trajectory bun-
dle method is a simple and robust method for solving trajectory optimization problems to
tight constraint and optimality tolerances.
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11.2 Background

Like many nonlinear optimization algorithms, the trajectory bundle method handles non-
linear cost and constraint functions by approximating them locally with affine functions.
In this section, the standard method for approximating functions as affine with a Taylor
series is detailed, followed by a derivative-free method using linear interpolation over sam-
pled points. Using these linear interpolants, the process for locally approximating a generic
constrained optimization problem as convex is shown.

11.2.1 Affine Function Approximation

An arbitrary function p : Ra → Rb is only affine if it can be represented in the following
form: paff(y) = d+Cy, where d ∈ Rb and C ∈ Rb×a. The process of locally approximating
a nonlinear function with an affine function around a point ȳ is often referred to as lin-
earization, with ȳ denoted as the linearization point. In this section, the standard method
of approximation by first-order Taylor series is presented, followed by a derivative-free
method that involves linear interpolation of sampled points.

Taylor Series

An affine approximation of this function p(y) ≈ p̂(y) can be formed in the vicinity of an
input value ȳ through the use of the first-order Taylor series,

p(y) ≈ p̂(y) = p(ȳ) +
∂p

∂y
(y − ȳ), (11.1)

where both the value and the Jacobian of p are calculated at the point ȳ. This approxima-
tion is exact at ȳ, and, generally speaking, becomes less accurate the further the deviation
from ȳ. For affine functions, the first-order Taylor series simply recovers the original func-
tion and the approximation is exact.

Linear Interpolation

Alternatively, nonlinear functions can be approximated in a derivative-free manner by lin-
early interpolating between sampled function values. This is useful for when the derivatives
of a function are unavailable, challenging to compute, or unreliable.

For an affine function, any linear interpolation between two inputs is equal to the linear
interpolation of the outputs. This means for an interpolation parameter θ ∈ [0, 1] and two
inputs y1 and y2, the following holds:

paff( θy1 + (1− θ)y2︸ ︷︷ ︸
interpolated inputs

) = θpaff(y1) + (1− θ)paff(y2)︸ ︷︷ ︸
interpolated outputs

. (11.2)
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This concept can be extended to m points with an interpolation vector α ∈ Rm that
belongs to a standard simplex:

α ∈ ∆m−1 =

{
α ∈ Rm

∣∣∣∣ m∑
i=1

αi = 1, α ≥ 0

}
, (11.3)

where again the convex combination of these m inputs is equal to the same convex combi-
nation of the m outputs,

paff

( m∑
i=1

αiyi

)
=

m∑
i=1

αipaff(yi). (11.4)

This means that we can locally approximate the original nonlinear function p in the neigh-
borhood of ȳ by sampling m points from a distribution centered around ȳ with yi ∼ D(ȳ),
and constraining the inputs to this approximation to be a linear combination of the sam-
ple points. For notational convenience, the lists of inputs and outputs are horizontally
concatenated as columns of the matrices

Wy =
[
y1 y2 · · · ym

]
∈ Rny×m, (11.5)

Wp =
[
p(z1) p(z2) · · · p(zm)

]
∈ Rnr×m, (11.6)

enabling the affine approximation p̂ to be summarized as the following:

y = Wyα linear interpolation of inputs, (11.7)

p̂ = Wpα linear interpolation of outputs. (11.8)

Using this, we are effectively approximating p(Wyα) ≈ Wpα, which is linear in α.

11.2.2 Approximation for Optimization

We will now consider a general nonlinear optimization problem and examine how these
linearization techniques can be utilized to form a convex approximation of the original
problem. This approach is used in sequential convex programming (SCP) methods where
nonconvex optimization problems are solved by iteratively approximating the problem as
convex in the neighborhood of the local iterate and solving for a step direction [61, 130,
106, 135].

To demonstrate how an SCP method would work with the two approximation tech-
niques outlined, we examine a generic constrained optimization of the following form:

minimize
z

∥r(z)∥22
subject to c(z) = 0,

(11.9)

with a decision variable z ∈ Rnz , residual cost function r : Rnz → Rnr , and constraint
function c : Rnz → Rnc . By approximating both of these functions as affine with a
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Figure 11.1: A comparison of the accuracy of a first-order Taylor series taken about (x, y) =
(1, 1) with linear interpolation of the four corner points on the function f(x, y) = sin(x)ey.
While the errors are comparable between these two approximations, the patterns of these
errors are notably different. This is because approximation by linear interpolation results
in an affine model that can be different than the first-order Taylor series.

first-order Taylor series around a current iterate z̄, we are left with the following convex
optimization problem:

minimize
z

∥r̂∥22

subject to r̂ = r(z̄) +
∂r

∂z
(z − z̄),

ĉ = c(z̄) +
∂c

∂z
(z − z̄) = 0.

(11.10)

While this problem is convex and we are guaranteed to find a globally optimal solution
if one exists, we do not have a guarantee of feasibility. There are circumstances in which
the linearization of the constraint function results in infeasible problems [130]. In order
to guarantee that this problem is always feasible, many sequential convex programming
methods convert the constraint into a penalty and reformulate (11.10) with an always-
feasible variant,

minimize
z

∥r̂∥22 + ϕ(ĉ)

subject to r̂ = r(z̄) +
∂r

∂z
(z − z̄),

ĉ = c(z̄) +
∂c

∂z
(z − z̄),

(11.11)

where ϕ : Rnc → R+ is a nonnegative penalty function that discourages constraint viola-
tions. No matter the structure of the cost and constraint functions, the convex optimization
problem in (11.11) is guaranteed to always have a solution.
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Alternatively, a linear interpolant such as that shown in (11.8) can be used to approx-
imate the cost and constraint functions. To do this, m sample points centered around the
current iterate z̄ are used to evaluate the cost and constraint functions. These values are
then horizontally concatenated into the following matrices:

Wz =
[
z1 z2 · · · zm

]
∈ Rnz×m, (11.12)

Wr =
[
r(z1) r(z2) · · · r(zm)

]
∈ Rnr×m, (11.13)

Wc =
[
c(z1) c(z2) · · · c(zm)

]
∈ Rnc×m. (11.14)

The interpolation vector α ∈ Rm is used to interpolate between these samples and their
corresponding cost and constraint values. These approximations are used to recreate the
relaxed problem shown in (11.11) as the following:

minimize
α

∥r̂∥22 + ϕ(ĉ)

subject to r̂ = Wrα,

ĉ = Wcα,

α ∈ ∆m−1,

(11.15)

where the optimal solution is z∗ = Wzα
∗. It is important to note the similarities between

(11.11) and (11.15), where the only difference is the method to approximate the cost,
residual, and constraint functions. Another key difference between these methods is the
implicit trust region present in the simplex constraint on α. Since α ∈ ∆m−1, this means
that the approximated functions are restricted to be within the convex hull of the sampled
points. Using a sampling scheme that only samples points within a set trust region, the
solution to (11.15) is guaranteed to stay within the trust region.

11.3 The Trajectory Bundle Method

In this section we outline a canonical trajectory optimization problem specification and use
linearly interpolated trajectory bundles to approximate the cost and constraint functions.
This formulation is not only general enough to handle a variety of robotics platforms, it
can also be extended to solve batch state estimation problems that share the trajectory
optimization problem structure.

Trajectories will be represented in discrete-time as a list of vectors. For a dynamical
system with a state x ∈ Rnx and control u ∈ Rnu , the discrete-time dynamics function
xk+1 = f(xk, uk) maps the state and control at time-step k to the state at k + 1. A
trajectory comprised of N time steps is represented by (x1:N , u1:N−1), such that numerical
optimization can be used to solve for these values.

11.3.1 Trajectory Optimization

Trajectory optimization is a powerful tool for reasoning about challenging control problems
by solving for the optimal control sequence with numerical optimization. This technique
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leverages advances in nonlinear programming to solve a variety of underactuated control
tasks with nonlinear dynamics. A canonical trajectory optimization problem considering
a trajectory with N time-steps is represented as the following:

minimize
x1:N , u1:N−1

∥rN(xN)∥22 +
N−1∑
k=1

∥rk(xk, uk)∥22

subject to xk+1 = f(xk, uk),

c(xk, uk) ≥ 0,

(11.16)

where c(xk) is a generic constraint function. We will assume that all relevant constraints
will be expressed in this form, including initial/goal constraints, state/control limits, and
other arbitrary constraints present in the problem.

The problem format in (11.16) is often referred to as multiple shooting [67, 17], where
both the state and control histories are optimized over, and the trajectory only becomes
dynamically feasible at constraint convergence. This differs from single shooting, where
only the controls are optimized over, and a rollout is performed to recover the states. One
important distinction between these two methods is that in single shooting, the discrete-
time dynamics must be evaluated sequentially N − 1 times during the rollout, while in
multiple shooting, the N − 1 dynamics constraints can be evaluated entirely in parallel.
This is especially relevant with GPU-based physics simulation, where the speed of a single
simulation can be comparable to thousands of simulations run in parallel.

Solving Multiple Shooting with Trajectory Bundles

The trajectory bundle method is able to reason about the trajectory optimization problem
in (11.16) without having to differentiate any of the cost, dynamics, or constraint functions.
Instead of using derivatives to approximate these functions with their first-order Taylor
series, sampled trajectories near the current iterate are used to evaluate these functions
for approximation with linear interpolation. This idea is shown in 11.2.1 Given an initial
guess or current iterate (x̄1:N , ū1:N−1), the costs, constraints, and dynamics functions are
computed for each of the M samples surrounding each knot points. To demonstrate this,
let us examine a single knot point, k, where the current iterate is (x̄k, ūk). From here, m
points are sampled near the iterate, and these samples are horizontally concatenated into
the following matrices:

W (k)
x =

[
xk,1 xk,2 · · · xk,m

]
∈ Rnx×m, (11.17)

W (k)
u =

[
uk,1 uk,2 · · · uk,m

]
∈ Rnu×m, (11.18)

after which, all of the cost, dynamics, and constraint functions are computed and stored
in a similar fashion,

W (k)
r =

[
r(xk,1, uk,1) r(xk,2, uk,2) · · · r(xk,m, uk,m)

]
∈ Rnr×m, (11.19)

W
(k)
f =

[
f(xk,1, uk,1) f(xk,2, uk,2) · · · f(xk,m, uk,m)

]
∈ Rnx×m, (11.20)

W (k)
c =

[
c(xk,1, uk,1) c(xk,2, uk,2) · · · c(xk,m, uk,m)

]
∈ Rnc×m. (11.21)
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These matrices are computed for time-steps 1→ N , with time-step N omitting the dynam-
ics evaluation matrixWf (since there is no need to propagate dynamics after the end of the
trajectory). Together, these matrices can be used to locally approximate the potentially
nonconvex optimization problem in (11.16) as the following convex optimization problem:

minimize
α(1:N)

∥W (N)
r α(N)∥22 +

N−1∑
k=1

∥W (k)
r α(k)∥22 + ϕ(s) + ϕ(w)

subject to xk = W (k)
x α(k),

uk = W (k)
u α(k),

ck = W (k)
c α(k),

xk+1 = W
(k)
f α(k) + sk+1,

ck + wk ≥ 0,

α(k) ∈ ∆m−1.

(11.22)

After each time this problem is solved, the new iterates (x1:N , u1:N−1) are used to generate
m new samples around the iterate, and the problem is formed and solved again. This is
a sequential convex programming algorithm, where the solution to the original nonconvex
optimization problem is solved for with a sequence of convex ones [130]. In this implemen-
tation, the penalty function used is ϕ(·) = ρ∥ · ∥1 with a large (ρ ∈ [105, 108]). As soon
as the solver is able to treat the constraints as real constraints instead of penalties, the
penalties are removed, and true constraint satisfaction is achieved.

11.3.2 Batch State Estimation

Another valuable extension of the trajectory bundle method is for batch state estimation,
where the maximum a posteriori (MAP) can be solved for in a framework compatible
with (11.16). Like the Unscented Kalman Filter (UKF), this approach does not require
derivatives from the dynamics or measurement functions.

We consider a dynamical system with the following process and measurement models:

xk+1 = f(xk) + qk, q ∼ N (0, Q), (11.23)

vk = g(xk) + rk, r ∼ N (0, R), (11.24)

where f : Rnx → Rnx is the dynamics function, and g : Rnx → Rnv is the measurement
function. Oftentimes there exists a Gaussian prior belief state, which is represented with
x1 ∼ N (µic,Σic), representing the belief over the state estimate at the first time-step.
From here, the MAP problem solving for the optimal mean (µ1:N) takes the form of the
following optimization problem:

minimize
µ1:N

∥µic − µ1∥2Σ−1 +
N−1∑
k=1

∥qk∥2Q−1 + ∥rk+1∥2R−1

subject to µk+1 = f(µk) + qk,

yk = g(µk) + rk,

(11.25)
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which falls within the structure of the canonical trajectory optimization problem shown
in (11.16). The trajectory bundle method is then used to approximate the dynamics
and measurement functions with m samples at each time-step in the same way shown in
(11.17)-(11.21)

minimize
µ1:N

∥µic − µ1∥2Σ−1 +
N−1∑
k=1

∥qk∥2Q−1 + ∥rk+1∥2R−1

subject to µk = W (k)
µ α(k),

µk+1 = W
(k)
f α(k) + qk,

vk = W (k)
g α(k) + rk,

α(k) ∈ ∆m−1,

(11.26)

where vk are the true measurements (not being optimized over). Since there are no hard
constraints in this formulation, there is no need for a penalty ϕ to reduce the constraint
violations. Instead, the process for solving (11.25) simply involves forming the bundles,
solving (11.26), and repeating until convergence.

11.4 Examples

To demonstrate the efficacy of the trajectory bundle method in solving derivative-free
non-convex trajectory optimization problems, a variety of classic and challenging robotics
problems are solved. In each of these examples, the discrete-time dynamics are evaluated
with MuJoCo XLA (MJX) [165], such that the evaluation of the bundles is parallelized
over both the samples unique to an individual time-step, as well as for all time-steps in
the trajectory. The convex optimization problems are solved with Clarabel [62] through
CVXPY [40].

In the first example shown in Fig. 11.2, a classic cartpole swing-up is solved for using
the trajectory bundle method. With a simple initialization where the configurations are
linearly interpolated between the initial (pole down) and goal (pole up) states. From here,
a 2.5 second trajectory is solved for with input constraints on the force on the cart. The
resulting solve takes fewer than 40 iterations with tight constraint satisfaction.

A more complex example is shown in 11.3, where a satellite is tasked with an aggressive
rest-to-rest reorientation maneuver with limits on the control torque on the satellite. The
trajectory bundle method solves for an optimal trajectory in fewer than 30 iterations, with
a maximum constraint satisfaction below 10−7. The resulting trajectory is efficient and
aggressive, and while it starts and stops with no angular velocity, it moves in excess of 50
degrees per second during the period with peak angular rates.

In Fig. 11.4 and Fig. 11.5, a quadrotor with rotor velocity control is tasked with
tracking a skewed figure eight path through space. The trajectory is discretized into 100
time-steps, and the resulting optimal trajectory smoothly tracks this aggressive reference
while maintaining a smooth control commands. The angular velocity of the quadrotor
is in excess of 200 degrees per second, resulting in highly nonlinear dynamics. In fewer
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Figure 11.2: The classic cartpole swingup task solved with the trajectory bundle method.
In 2.5 seconds, the pole must swing from the lowest position to the highest position, with
control constraints on the force on the cart. Without the need for any derivatives, the
proposed method is able to achieve tight constraint satisfaction in fewer than 40 iterations.
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Figure 11.3: A highly nonlinear satellite rest-to-rest slew is solved for with the trajectory
bundle method. The satellite has direct torque control on the body with limits of 2 Nm.

Figure 11.4: Given a figure eight reference trajectory, a quadrotor with rotor velocity
control is tasked with tracking this trajectory as closely as possible.
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Figure 11.5: State and control convergence plots for the quadrotor tracking the skewed
figure eight as shown in 11.4. The trajectory bundle method is used to solve for the
aggressive trajectory, with angular velocity in excess of 200 degrees per second at times.
The trajectory is discretized into 100 time-steps and the method converges to a solution
in fewer than 60 iterations.
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Figure 11.6: A double integrator with acceleration control is tasked with navigating around
three obstacles to arrive at a goal position. The trajectory bundle method is able to directly
reason about these arbitrary nonconvex constraints without the need for any derivatives,
with strong constraint satisfaction and optimality achieved in fewer than 40 iterations.

than 60 iterations, the trajectory bundle method is able to solve this problem to the given
constraint tolerance.

To demonstrate the ability of the trajectory bundle method to handle arbitrary non-
linear constraints, a collision avoidance example is shown in Fig. 11.6. In this example,
the dynamics are that of a double integrator (u = ẍ), and along with the three collision
avoidance constraints, there is also a goal constraint at the origin. Without any derivative
information from these nonconvex/nonlinear constraints, the trajectory bundle method is
able to converge on a feasible collision-free trajectory in fewer than 40 iterations to a tight
constraint satisfaction.

11.5 Conclusion

In this work, we present the trajectory bundle method, a derivative-free trajectory opti-
mization technique capable of solving nonconvex constrained optimization problems with
strong constraint satisfaction. Instead of approximating the nonconvex functions with first-
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order Taylor series, the trajectory bundle method samples points locally and computes the
cost, dynamics, and constraint functions for each of these samples in what we refer to
as bundles. These bundles are used to linearly interpolate between these sampled values
to approximate the cost, dynamics, and constraint functions. After the computation of
these highly parallelizeable function calls, a convex optimization problem is solved where
the nonconvex functions are replaced with linear interpolants, and the solution is used to
generate new samples for the bundles. The effectiveness of this method is demonstrated
on a variety of robotics platforms.
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